407 research outputs found

    Thesaurus-based index term extraction for agricultural documents

    Get PDF
    This paper describes a new algorithm for automatically extracting index terms from documents relating to the domain of agriculture. The domain-specific Agrovoc thesaurus developed by the FAO is used both as a controlled vocabulary and as a knowledge base for semantic matching. The automatically assigned terms are evaluated against a manually indexed 200-item sample of the FAO’s document repository, and the performance of the new algorithm is compared with a state-of-the-art system for keyphrase extraction

    Mining the Web for Lexical Knowledge to Improve Keyphrase Extraction: Learning from Labeled and Unlabeled Data.

    Get PDF
    A journal article is often accompanied by a list of keyphrases, composed of about five to fifteen important words and phrases that capture the article’s main topics. Keyphrases are useful for a variety of purposes, including summarizing, indexing, labeling, categorizing, clustering, highlighting, browsing, and searching. The task of automatic keyphrase extraction is to select keyphrases from within the text of a given document. Automatic keyphrase extraction makes it feasible to generate keyphrases for the huge number of documents that do not have manually assigned keyphrases. Good performance on this task has been obtained by approaching it as a supervised learning problem. An input document is treated as a set of candidate phrases that must be classified as either keyphrases or non-keyphrases. To classify a candidate phrase as a keyphrase, the most important features (attributes) appear to be the frequency and location of the candidate phrase in the document. Recent work has demonstrated that it is also useful to know the frequency of the candidate phrase as a manually assigned keyphrase for other documents in the same domain as the given document (e.g., the domain of computer science). Unfortunately, this keyphrase-frequency feature is domain-specific (the learning process must be repeated for each new domain) and training-intensive (good performance requires a relatively large number of training documents in the given domain, with manually assigned keyphrases). The aim of the work described here is to remove these limitations. In this paper, I introduce new features that are conceptually related to keyphrase-frequency and I present experiments that show that the new features result in improved keyphrase extraction, although they are neither domain-specific nor training-intensive. The new features are generated by issuing queries to a Web search engine, based on the candidate phrases in the input document. The feature values are calculated from the number of hits for the queries (the number of matching Web pages). In essence, these new features are derived by mining lexical knowledge from a very large collection of unlabeled data, consisting of approximately 350 million Web pages without manually assigned keyphrases

    Coherent Keyphrase Extraction via Web Mining

    Full text link
    Keyphrases are useful for a variety of purposes, including summarizing, indexing, labeling, categorizing, clustering, highlighting, browsing, and searching. The task of automatic keyphrase extraction is to select keyphrases from within the text of a given document. Automatic keyphrase extraction makes it feasible to generate keyphrases for the huge number of documents that do not have manually assigned keyphrases. A limitation of previous keyphrase extraction algorithms is that the selected keyphrases are occasionally incoherent. That is, the majority of the output keyphrases may fit together well, but there may be a minority that appear to be outliers, with no clear semantic relation to the majority or to each other. This paper presents enhancements to the Kea keyphrase extraction algorithm that are designed to increase the coherence of the extracted keyphrases. The approach is to use the degree of statistical association among candidate keyphrases as evidence that they may be semantically related. The statistical association is measured using web mining. Experiments demonstrate that the enhancements improve the quality of the extracted keyphrases. Furthermore, the enhancements are not domain-specific: the algorithm generalizes well when it is trained on one domain (computer science documents) and tested on another (physics documents).Comment: 6 pages, related work available at http://purl.org/peter.turney

    Human-competitive automatic topic indexing

    Get PDF
    Topic indexing is the task of identifying the main topics covered by a document. These are useful for many purposes: as subject headings in libraries, as keywords in academic publications and as tags on the web. Knowing a document's topics helps people judge its relevance quickly. However, assigning topics manually is labor intensive. This thesis shows how to generate them automatically in a way that competes with human performance. Three kinds of indexing are investigated: term assignment, a task commonly performed by librarians, who select topics from a controlled vocabulary; tagging, a popular activity of web users, who choose topics freely; and a new method of keyphrase extraction, where topics are equated to Wikipedia article names. A general two-stage algorithm is introduced that first selects candidate topics and then ranks them by significance based on their properties. These properties draw on statistical, semantic, domain-specific and encyclopedic knowledge. They are combined using a machine learning algorithm that models human indexing behavior from examples. This approach is evaluated by comparing automatically generated topics to those assigned by professional indexers, and by amateurs. We claim that the algorithm is human-competitive because it chooses topics that are as consistent with those assigned by humans as their topics are with each other. The approach is generalizable, requires little training data and applies across different domains and languages

    Learning to Extract Keyphrases from Text

    Get PDF
    Many academic journals ask their authors to provide a list of about five to fifteen key words, to appear on the first page of each article. Since these key words are often phrases of two or more words, we prefer to call them keyphrases. There is a surprisingly wide variety of tasks for which keyphrases are useful, as we discuss in this paper. Recent commercial software, such as Microsoft?s Word 97 and Verity?s Search 97, includes algorithms that automatically extract keyphrases from documents. In this paper, we approach the problem of automatically extracting keyphrases from text as a supervised learning task. We treat a document as a set of phrases, which the learning algorithm must learn to classify as positive or negative examples of keyphrases. Our first set of experiments applies the C4.5 decision tree induction algorithm to this learning task. The second set of experiments applies the GenEx algorithm to the task. We developed the GenEx algorithm specifically for this task. The third set of experiments examines the performance of GenEx on the task of metadata generation, relative to the performance of Microsoft?s Word 97. The fourth and final set of experiments investigates the performance of GenEx on the task of highlighting, relative to Verity?s Search 97. The experimental results support the claim that a specialized learning algorithm (GenEx) can generate better keyphrases than a general-purpose learning algorithm (C4.5) and the non-learning algorithms that are used in commercial software (Word 97 and Search 97)

    Extraction of Keyphrases from Text: Evaluation of Four Algorithms

    Get PDF
    This report presents an empirical evaluation of four algorithms for automatically extracting keywords and keyphrases from documents. The four algorithms are compared using five different collections of documents. For each document, we have a target set of keyphrases, which were generated by hand. The target keyphrases were generated for human readers; they were not tailored for any of the four keyphrase extraction algorithms. Each of the algorithms was evaluated by the degree to which the algorithm’s keyphrases matched the manually generated keyphrases. The four algorithms were (1) the AutoSummarize feature in Microsoft’s Word 97, (2) an algorithm based on Eric Brill’s part-of-speech tagger, (3) the Summarize feature in Verity’s Search 97, and (4) NRC’s Extractor algorithm. For all five document collections, NRC’s Extractor yields the best match with the manually generated keyphrases
    corecore