20,419 research outputs found

    Incremental Adversarial Domain Adaptation for Continually Changing Environments

    Full text link
    Continuous appearance shifts such as changes in weather and lighting conditions can impact the performance of deployed machine learning models. While unsupervised domain adaptation aims to address this challenge, current approaches do not utilise the continuity of the occurring shifts. In particular, many robotics applications exhibit these conditions and thus facilitate the potential to incrementally adapt a learnt model over minor shifts which integrate to massive differences over time. Our work presents an adversarial approach for lifelong, incremental domain adaptation which benefits from unsupervised alignment to a series of intermediate domains which successively diverge from the labelled source domain. We empirically demonstrate that our incremental approach improves handling of large appearance changes, e.g. day to night, on a traversable-path segmentation task compared with a direct, single alignment step approach. Furthermore, by approximating the feature distribution for the source domain with a generative adversarial network, the deployment module can be rendered fully independent of retaining potentially large amounts of the related source training data for only a minor reduction in performance.Comment: International Conference on Robotics and Automation 201

    Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation

    Full text link
    © 2019 IEEE. We consider the problem of unsupervised domain adaptation in semantic segmentation. The key in this campaign consists in reducing the domain shift, i.e., enforcing the data distributions of the two domains to be similar. A popular strategy is to align the marginal distribution in the feature space through adversarial learning. However, this global alignment strategy does not consider the local category-level feature distribution. A possible consequence of the global movement is that some categories which are originally well aligned between the source and target may be incorrectly mapped. To address this problem, this paper introduces a category-level adversarial network, aiming to enforce local semantic consistency during the trend of global alignment. Our idea is to take a close look at the category-level data distribution and align each class with an adaptive adversarial loss. Specifically, we reduce the weight of the adversarial loss for category-level aligned features while increasing the adversarial force for those poorly aligned. In this process, we decide how well a feature is category-level aligned between source and target by a co-training approach. In two domain adaptation tasks, i.e., GTA5-> Cityscapes and SYNTHIA-> Cityscapes, we validate that the proposed method matches the state of the art in segmentation accuracy

    Are You A Risk Taker? Adversarial Learning of Asymmetric Cross-Domain Alignment for Risk Tolerance Prediction

    Full text link
    Most current studies on survey analysis and risk tolerance modelling lack professional knowledge and domain-specific models. Given the effectiveness of generative adversarial learning in cross-domain information, we design an Asymmetric cross-Domain Generative Adversarial Network (ADGAN) for domain scale inequality. ADGAN utilizes the information-sufficient domain to provide extra information to improve the representation learning on the information-insufficient domain via domain alignment. We provide data analysis and user model on two data sources: Consumer Consumption Information and Survey Information. We further test ADGAN on a real-world dataset with view embedding structures and show ADGAN can better deal with the class imbalance and unqualified data space than state-of-the-art, demonstrating the effectiveness of leveraging asymmetrical domain information

    FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors

    Full text link
    Face Super-Resolution (SR) is a domain-specific super-resolution problem. The specific facial prior knowledge could be leveraged for better super-resolving face images. We present a novel deep end-to-end trainable Face Super-Resolution Network (FSRNet), which makes full use of the geometry prior, i.e., facial landmark heatmaps and parsing maps, to super-resolve very low-resolution (LR) face images without well-aligned requirement. Specifically, we first construct a coarse SR network to recover a coarse high-resolution (HR) image. Then, the coarse HR image is sent to two branches: a fine SR encoder and a prior information estimation network, which extracts the image features, and estimates landmark heatmaps/parsing maps respectively. Both image features and prior information are sent to a fine SR decoder to recover the HR image. To further generate realistic faces, we propose the Face Super-Resolution Generative Adversarial Network (FSRGAN) to incorporate the adversarial loss into FSRNet. Moreover, we introduce two related tasks, face alignment and parsing, as the new evaluation metrics for face SR, which address the inconsistency of classic metrics w.r.t. visual perception. Extensive benchmark experiments show that FSRNet and FSRGAN significantly outperforms state of the arts for very LR face SR, both quantitatively and qualitatively. Code will be made available upon publication.Comment: Chen and Tai contributed equally to this pape
    • …
    corecore