5,056 research outputs found

    LiFtEr: Language to Encode Induction Heuristics for Isabelle/HOL

    Full text link
    Proof assistants, such as Isabelle/HOL, offer tools to facilitate inductive theorem proving. Isabelle experts know how to use these tools effectively; however, there is a little tool support for transferring this expert knowledge to a wider user audience. To address this problem, we present our domain-specific language, LiFtEr. LiFtEr allows experienced Isabelle users to encode their induction heuristics in a style independent of any problem domain. LiFtEr's interpreter mechanically checks if a given application of induction tool matches the heuristics, thus automating the knowledge transfer loop.Comment: This is the pre-print of our paper of the same title accepted at APLAS2019 (https://doi.org/10.1007/978-3-030-34175-6_14). We updated the draft after fixing the errata found by Kenji Miyamot

    Predicting ConceptNet Path Quality Using Crowdsourced Assessments of Naturalness

    Full text link
    In many applications, it is important to characterize the way in which two concepts are semantically related. Knowledge graphs such as ConceptNet provide a rich source of information for such characterizations by encoding relations between concepts as edges in a graph. When two concepts are not directly connected by an edge, their relationship can still be described in terms of the paths that connect them. Unfortunately, many of these paths are uninformative and noisy, which means that the success of applications that use such path features crucially relies on their ability to select high-quality paths. In existing applications, this path selection process is based on relatively simple heuristics. In this paper we instead propose to learn to predict path quality from crowdsourced human assessments. Since we are interested in a generic task-independent notion of quality, we simply ask human participants to rank paths according to their subjective assessment of the paths' naturalness, without attempting to define naturalness or steering the participants towards particular indicators of quality. We show that a neural network model trained on these assessments is able to predict human judgments on unseen paths with near optimal performance. Most notably, we find that the resulting path selection method is substantially better than the current heuristic approaches at identifying meaningful paths.Comment: In Proceedings of the Web Conference (WWW) 201
    • …
    corecore