436,835 research outputs found

    Criticality and entanglement in random quantum systems

    Full text link
    We review studies of entanglement entropy in systems with quenched randomness, concentrating on universal behavior at strongly random quantum critical points. The disorder-averaged entanglement entropy provides insight into the quantum criticality of these systems and an understanding of their relationship to non-random ("pure") quantum criticality. The entanglement near many such critical points in one dimension shows a logarithmic divergence in subsystem size, similar to that in the pure case but with a different universal coefficient. Such universal coefficients are examples of universal critical amplitudes in a random system. Possible measurements are reviewed along with the one-particle entanglement scaling at certain Anderson localization transitions. We also comment briefly on higher dimensions and challenges for the future.Comment: Review article for the special issue "Entanglement entropy in extended systems" in J. Phys.

    Spinodal Phase Separation in Liquid Films with Quenched Disorder

    Full text link
    We study spinodal phase separation in unstable thin liquid films on chemically disordered substrates via simulations of the thin-film equation. The disorder is characterized by immobile patches of varying size and Hamaker constant. The effect of disorder is pronounced in the early stages (amplification of fluctuations), remains during the intermediate stages and vanishes in the late stages (domain growth). These findings are in contrast to the well-known effects of quenched disorder in usual phase-separation processes, viz., the early stages remain undisturbed and domain growth is slowed down in the asymptotic regime. We also address the inverse problem of estimating disorder by thin-film experiments.Comment: 12 pages, 7 figure

    Growth Law and Superuniversality in the Coarsening of Disordered Ferromagnets

    Get PDF
    We present comprehensive numerical results for domain growth in the two-dimensional {\it Random Bond Ising Model} (RBIM) with nonconserved Glauber kinetics. We characterize the evolution via the {\it domain growth law}, and two-time quantities like the {\it autocorrelation function} and {\it autoresponse function}. Our results clearly establish that the growth law shows a crossover from a pre-asymptotic regime with "power-law growth with a disorder-dependent exponent" to an asymptotic regime with "logarithmic growth". We compare this behavior with previous results on one-dimensional disordered systems and we propose a unifying picture in a renormalization group framework. We also study the corresponding crossover in the scaling functions for the two-time quantities. Super-universality is found not to hold. Clear evidence supporting the dimensionality dependence of the scaling exponent of the autoresponse function is obtained.Comment: Thoroughly revised manuscript. The Introduction, Section 2 and Section 4 have been largely rewritten. References added. Final version accepted for publication on Journal of Statistical Mechanics: Theory and Experimen

    Simplicity of State and Overlap Structure in Finite-Volume Realistic Spin Glasses

    Full text link
    We present a combination of heuristic and rigorous arguments indicating that both the pure state structure and the overlap structure of realistic spin glasses should be relatively simple: in a large finite volume with coupling-independent boundary conditions, such as periodic, at most a pair of flip-related (or the appropriate number of symmetry-related in the non-Ising case) states appear, and the Parisi overlap distribution correspondingly exhibits at most a pair of delta-functions at plus/minus the self-overlap. This rules out the nonstandard SK picture introduced by us earlier, and when combined with our previous elimination of more standard versions of the mean field picture, argues against the possibility of even limited versions of mean field ordering in realistic spin glasses. If broken spin flip symmetry should occur, this leaves open two main possibilities for ordering in the spin glass phase: the droplet/scaling two-state picture, and the chaotic pairs many-state picture introduced by us earlier. We present scaling arguments which provide a possible physical basis for the latter picture, and discuss possible reasons behind numerical observations of more complicated overlap structures in finite volumes.Comment: 22 pages (LaTeX; needs revtex), 1 figure (PostScript); to appear in Physical Review

    A FRAP model to investigate reaction-diffusion of proteins within a bounded domain: a theoretical approach

    Full text link
    Temporally and spatially resolved measurements of protein transport inside cells provide important clues to the functional architecture and dynamics of biological systems. Fluorescence Recovery After Photobleaching (FRAP) technique has been used over the past three decades to measure the mobility of macromolecules and protein transport and interaction with immobile structures inside the cell nucleus. A theoretical model is presented that aims to describe protein transport inside the nucleus, a process which is influenced by the presence of a boundary (i.e. membrane). A set of reaction-diffusion equations is employed to model both the diffusion of proteins and their interaction with immobile binding sites. The proposed model has been designed to be applied to biological samples with a Confocal Laser Scanning Microscope (CLSM) equipped with the feature to bleach regions characterised by a scanning beam that has a radially Gaussian distributed profile. The proposed model leads to FRAP curves that depend on the on- and off-rates. Semi-analytical expressions are used to define the boundaries of on- (off-) rate parameter space in simplified cases when molecules move within a bounded domain. The theoretical model can be used in conjunction to experimental data acquired by CLSM to investigate the biophysical properties of proteins in living cells.Comment: 25 pages. Abstracts Proceedings, The American Society for Cell Biology, 46th Annual Meeting, December 9-13, 2006, San Dieg

    Nonequilibrium dynamics of random field Ising spin chains: exact results via real space RG

    Full text link
    Non-equilibrium dynamics of classical random Ising spin chains are studied using asymptotically exact real space renormalization group. Specifically the random field Ising model with and without an applied field (and the Ising spin glass (SG) in a field), in the universal regime of a large Imry Ma length so that coarsening of domains after a quench occurs over large scales. Two types of domain walls diffuse in opposite Sinai random potentials and mutually annihilate. The domain walls converge rapidly to a set of system-specific time-dependent positions {\it independent of the initial conditions}. We obtain the time dependent energy, magnetization and domain size distribution (statistically independent). The equilibrium limits agree with known exact results. We obtain exact scaling forms for two-point equal time correlation and two-time autocorrelations. We also compute the persistence properties of a single spin, of local magnetization, and of domains. The analogous quantities for the spin glass are obtained. We compute the two-point two-time correlation which can be measured by experiments on spin-glass like systems. Thermal fluctuations are found to be dominated by rare events; all moments of truncated correlations are computed. The response to a small field applied after waiting time twt_w, as measured in aging experiments, and the fluctuation-dissipation ratio X(t,tw)X(t,t_w) are computed. For (t−tw)∼twα^(t-t_w) \sim t_w^{\hat{\alpha}}, α^<1\hat{\alpha} <1, it equals its equilibrium value X=1, though time translational invariance fails. It exhibits for t−tw∼twt-t_w \sim t_w aging regime with non-trivial X=X(t/tw)≠1X=X(t/t_w) \neq 1, different from mean field.Comment: 55 pages, 9 figures, revte
    • …
    corecore