9,409 research outputs found

    Predictive User Modeling with Actionable Attributes

    Get PDF
    Different machine learning techniques have been proposed and used for modeling individual and group user needs, interests and preferences. In the traditional predictive modeling instances are described by observable variables, called attributes. The goal is to learn a model for predicting the target variable for unseen instances. For example, for marketing purposes a company consider profiling a new user based on her observed web browsing behavior, referral keywords or other relevant information. In many real world applications the values of some attributes are not only observable, but can be actively decided by a decision maker. Furthermore, in some of such applications the decision maker is interested not only to generate accurate predictions, but to maximize the probability of the desired outcome. For example, a direct marketing manager can choose which type of a special offer to send to a client (actionable attribute), hoping that the right choice will result in a positive response with a higher probability. We study how to learn to choose the value of an actionable attribute in order to maximize the probability of a desired outcome in predictive modeling. We emphasize that not all instances are equally sensitive to changes in actions. Accurate choice of an action is critical for those instances, which are on the borderline (e.g. users who do not have a strong opinion one way or the other). We formulate three supervised learning approaches for learning to select the value of an actionable attribute at an instance level. We also introduce a focused training procedure which puts more emphasis on the situations where varying the action is the most likely to take the effect. The proof of concept experimental validation on two real-world case studies in web analytics and e-learning domains highlights the potential of the proposed approaches

    Data Driven Data Mining to Domain Driven Data Mining

    Get PDF
    In the preceding decade data mining has came into sight as one of the largely energetic areas in information technology Traditional data mining is seriously dependent on data itself and relies on data oriented methodologies So there is a universal necessity in bridging the space among academia and trade is to provide all-purpose domain-related matters in surrounding real-life applications Domain-Driven Data Mining try to build up general principles methodologies and techniques for modelling and reconciling wide-ranging domain-related factors and synthesized ubiquitous intelligence adjacent problem domains with the data mining course of action and discovering knowledge to hold up business decision-makin

    Interpretable Predictions of Tree-based Ensembles via Actionable Feature Tweaking

    Full text link
    Machine-learned models are often described as "black boxes". In many real-world applications however, models may have to sacrifice predictive power in favour of human-interpretability. When this is the case, feature engineering becomes a crucial task, which requires significant and time-consuming human effort. Whilst some features are inherently static, representing properties that cannot be influenced (e.g., the age of an individual), others capture characteristics that could be adjusted (e.g., the daily amount of carbohydrates taken). Nonetheless, once a model is learned from the data, each prediction it makes on new instances is irreversible - assuming every instance to be a static point located in the chosen feature space. There are many circumstances however where it is important to understand (i) why a model outputs a certain prediction on a given instance, (ii) which adjustable features of that instance should be modified, and finally (iii) how to alter such a prediction when the mutated instance is input back to the model. In this paper, we present a technique that exploits the internals of a tree-based ensemble classifier to offer recommendations for transforming true negative instances into positively predicted ones. We demonstrate the validity of our approach using an online advertising application. First, we design a Random Forest classifier that effectively separates between two types of ads: low (negative) and high (positive) quality ads (instances). Then, we introduce an algorithm that provides recommendations that aim to transform a low quality ad (negative instance) into a high quality one (positive instance). Finally, we evaluate our approach on a subset of the active inventory of a large ad network, Yahoo Gemini.Comment: 10 pages, KDD 201

    Curbing domestic violence: instantiating C-K theory with formal concept analysis and emergent self organizing maps.

    Get PDF
    In this paper we propose a human-centered process for knowledge discovery from unstructured text that makes use of Formal Concept Analysis and Emergent Self Organizing Maps. The knowledge discovery process is conceptualized and interpreted as successive iterations through the Concept-Knowledge (C-K) theory design square. To illustrate its effectiveness, we report on a real-life case study of using the process at the Amsterdam-Amstelland police in the Netherlands aimed at distilling concepts to identify domestic violence from the unstructured text in actual police reports. The case study allows us to show how the process was not only able to uncover the nature of a phenomenon such as domestic violence, but also enabled analysts to identify many types of anomalies in the practice of policing. We will illustrate how the insights obtained from this exercise resulted in major improvements in the management of domestic violence cases.Formal concept analysis; Emergent self organizing map; C-K theory; Text mining; Actionable knowledge discovery; Domestic violence;

    Knowledge will Propel Machine Understanding of Content: Extrapolating from Current Examples

    Full text link
    Machine Learning has been a big success story during the AI resurgence. One particular stand out success relates to learning from a massive amount of data. In spite of early assertions of the unreasonable effectiveness of data, there is increasing recognition for utilizing knowledge whenever it is available or can be created purposefully. In this paper, we discuss the indispensable role of knowledge for deeper understanding of content where (i) large amounts of training data are unavailable, (ii) the objects to be recognized are complex, (e.g., implicit entities and highly subjective content), and (iii) applications need to use complementary or related data in multiple modalities/media. What brings us to the cusp of rapid progress is our ability to (a) create relevant and reliable knowledge and (b) carefully exploit knowledge to enhance ML/NLP techniques. Using diverse examples, we seek to foretell unprecedented progress in our ability for deeper understanding and exploitation of multimodal data and continued incorporation of knowledge in learning techniques.Comment: Pre-print of the paper accepted at 2017 IEEE/WIC/ACM International Conference on Web Intelligence (WI). arXiv admin note: substantial text overlap with arXiv:1610.0770

    Ontology mining for personalized search

    Get PDF
    Knowledge discovery for user information needs in user local information repositories is a challenging task. Traditional data mining techniques cannot provide a satisfactory solution for this challenge, because there exists a lot of uncertainties in the local information repositories. In this chapter, we introduce ontology mining, a new methodology, for solving this challenging issue, which aims to discover interesting and useful knowledge in databases in order to meet the specified constraints on an ontology. In this way, users can efficiently specify their information needs on the ontology rather than dig useful knowledge from the huge amount of discorded patterns or rules. The proposed ontology mining model is evaluated by applying to an information gathering system, and the results are promising

    A Survey on Actionable Knowledge

    Full text link
    Actionable Knowledge Discovery (AKD) is a crucial aspect of data mining that is gaining popularity and being applied in a wide range of domains. This is because AKD can extract valuable insights and information, also known as knowledge, from large datasets. The goal of this paper is to examine different research studies that focus on various domains and have different objectives. The paper will review and discuss the methods used in these studies in detail. AKD is a process of identifying and extracting actionable insights from data, which can be used to make informed decisions and improve business outcomes. It is a powerful tool for uncovering patterns and trends in data that can be used for various applications such as customer relationship management, marketing, and fraud detection. The research studies reviewed in this paper will explore different techniques and approaches for AKD in different domains, such as healthcare, finance, and telecommunications. The paper will provide a thorough analysis of the current state of AKD in the field and will review the main methods used by various research studies. Additionally, the paper will evaluate the advantages and disadvantages of each method and will discuss any novel or new solutions presented in the field. Overall, this paper aims to provide a comprehensive overview of the methods and techniques used in AKD and the impact they have on different domains
    • …
    corecore