956 research outputs found

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Graph Adaptive Knowledge Transfer for Unsupervised Domain Adaptation

    Get PDF
    Unsupervised domain adaptation has caught appealing attentions as it facilitates the unlabeled target learning by borrowing existing well-established source domain knowledge. Recent practice on domain adaptation manages to extract effective features by incorporating the pseudo labels for the target domain to better solve cross-domain distribution divergences. However, existing approaches separate target label optimization and domain-invariant feature learning as different steps. To address that issue, we develop a novel Graph Adaptive Knowledge Transfer (GAKT) model to jointly optimize target labels and domain-free features in a unified framework. Specifically, semi-supervised knowledge adaptation and label propagation on target data are coupled to benefit each other, and hence the marginal and conditional disparities across different domains will be better alleviated. Experimental evaluation on two cross-domain visual datasets demonstrates the effectiveness of our designed approach on facilitating the unlabeled target task learning, compared to the state-of-the-art domain adaptation approaches

    Learning Finer-class Networks for Universal Representations

    Full text link
    Many real-world visual recognition use-cases can not directly benefit from state-of-the-art CNN-based approaches because of the lack of many annotated data. The usual approach to deal with this is to transfer a representation pre-learned on a large annotated source-task onto a target-task of interest. This raises the question of how well the original representation is "universal", that is to say directly adapted to many different target-tasks. To improve such universality, the state-of-the-art consists in training networks on a diversified source problem, that is modified either by adding generic or specific categories to the initial set of categories. In this vein, we proposed a method that exploits finer-classes than the most specific ones existing, for which no annotation is available. We rely on unsupervised learning and a bottom-up split and merge strategy. We show that our method learns more universal representations than state-of-the-art, leading to significantly better results on 10 target-tasks from multiple domains, using several network architectures, either alone or combined with networks learned at a coarser semantic level.Comment: British Machine Vision Conference (BMVC) 201

    A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography(EEG)-Based Emotion Recognition

    Get PDF
    Electroencephalography (EEG)-based emotion recognition is an important element in psychiatric health diagnosis for patients. However, the underlying EEG sensor signals are always non-stationary if they are sampled from different experimental sessions or subjects. This results in the deterioration of the classification performance. Domain adaptation methods offer an effective way to reduce the discrepancy of marginal distribution. However, for EEG sensor signals, both marginal and conditional distributions may be mismatched. In addition, the existing domain adaptation strategies always require a high level of additional computation. To address this problem, a novel strategy named adaptive subspace feature matching (ASFM) is proposed in this paper in order to integrate both the marginal and conditional distributions within a unified framework (without any labeled samples from target subjects). Specifically, we develop a linear transformation function which matches the marginal distributions of the source and target subspaces without a regularization term. This significantly decreases the time complexity of our domain adaptation procedure. As a result, both marginal and conditional distribution discrepancies between the source domain and unlabeled target domain can be reduced, and logistic regression (LR) can be applied to the new source domain in order to train a classifier for use in the target domain, since the aligned source domain follows a distribution which is similar to that of the target domain. We compare our ASFM method with six typical approaches using a public EEG dataset with three affective states: positive, neutral, and negative. Both offline and online evaluations were performed. The subject-to-subject offline experimental results demonstrate that our component achieves a mean accuracy and standard deviation of 80.46% and 6.84%, respectively, as compared with a state-of-the-art method, the subspace alignment auto-encoder (SAAE), which achieves values of 77.88% and 7.33% on average, respectively. For the online analysis, the average classification accuracy and standard deviation of ASFM in the subject-to-subject evaluation for all the 15 subjects in a dataset was 75.11% and 7.65%, respectively, gaining a significant performance improvement compared to the best baseline LR which achieves 56.38% and 7.48%, respectively. The experimental results confirm the effectiveness of the proposed method relative to state-of-the-art methods. Moreover, computational efficiency of the proposed ASFM method is much better than standard domain adaptation; if the numbers of training samples and test samples are controlled within certain range, it is suitable for real-time classification. It can be concluded that ASFM is a useful and effective tool for decreasing domain discrepancy and reducing performance degradation across subjects and sessions in the field of EEG-based emotion recognition
    • …
    corecore