19,387 research outputs found

    S-Adapter: Generalizing Vision Transformer for Face Anti-Spoofing with Statistical Tokens

    Full text link
    Face Anti-Spoofing (FAS) aims to detect malicious attempts to invade a face recognition system by presenting spoofed faces. State-of-the-art FAS techniques predominantly rely on deep learning models but their cross-domain generalization capabilities are often hindered by the domain shift problem, which arises due to different distributions between training and testing data. In this study, we develop a generalized FAS method under the Efficient Parameter Transfer Learning (EPTL) paradigm, where we adapt the pre-trained Vision Transformer models for the FAS task. During training, the adapter modules are inserted into the pre-trained ViT model, and the adapters are updated while other pre-trained parameters remain fixed. We find the limitations of previous vanilla adapters in that they are based on linear layers, which lack a spoofing-aware inductive bias and thus restrict the cross-domain generalization. To address this limitation and achieve cross-domain generalized FAS, we propose a novel Statistical Adapter (S-Adapter) that gathers local discriminative and statistical information from localized token histograms. To further improve the generalization of the statistical tokens, we propose a novel Token Style Regularization (TSR), which aims to reduce domain style variance by regularizing Gram matrices extracted from tokens across different domains. Our experimental results demonstrate that our proposed S-Adapter and TSR provide significant benefits in both zero-shot and few-shot cross-domain testing, outperforming state-of-the-art methods on several benchmark tests. We will release the source code upon acceptance

    Context-Aware Zero-Shot Recognition

    Full text link
    We present a novel problem setting in zero-shot learning, zero-shot object recognition and detection in the context. Contrary to the traditional zero-shot learning methods, which simply infers unseen categories by transferring knowledge from the objects belonging to semantically similar seen categories, we aim to understand the identity of the novel objects in an image surrounded by the known objects using the inter-object relation prior. Specifically, we leverage the visual context and the geometric relationships between all pairs of objects in a single image, and capture the information useful to infer unseen categories. We integrate our context-aware zero-shot learning framework into the traditional zero-shot learning techniques seamlessly using a Conditional Random Field (CRF). The proposed algorithm is evaluated on both zero-shot region classification and zero-shot detection tasks. The results on Visual Genome (VG) dataset show that our model significantly boosts performance with the additional visual context compared to traditional methods
    • …
    corecore