25,555 research outputs found

    Quantum Chemistry, Anomalous Dimensions, and the Breakdown of Fermi Liquid Theory in Strongly Correlated Systems

    Full text link
    We formulate a local picture of strongly correlated systems as a Feynman sum over atomic configurations. The hopping amplitudes between these atomic configurations are identified as the renormalization group charges, which describe the local physics at different energy scales. For a metallic system away from half-filling, the fixed point local Hamiltonian is a generalized Anderson impurity model in the mixed valence regime. There are three types of fixed points: a coherent Fermi liquid (FL) and two classes of self-similar (scale invariant) phases which we denote incoherent metallic states (IMS). When the transitions between the atomic configurations proceed coherently at low energies, the system is a Fermi liquid. Incoherent transitions between the low energy atomic configurations characterize the incoherent metallic states. The initial conditions for the renormalization group flow are determined by the physics at rather high energy scales. This is the domain of local quantum chemistry. We use simple quantum chemistry estimates to specify the basin of attraction of the IMS fixed points.Comment: 12 pages, REVTE

    The Gravothermal Instability at all scales: from Turnaround Radius to Supernovae

    Full text link
    The gravitational instability, responsible for the formation of the structure of the Universe, occurs below energy thresholds and above spatial scales of a self-gravitating expanding region, when thermal energy can no longer counterbalance self-gravity. I argue that at sufficiently-large scales, dark energy may restore thermal stability. This stability re-entrance of an isothermal sphere defines a turnaround radius, which dictates the maximum allowed size of any structure generated by gravitational instability. On the opposite limit of high energies and small scales, I will show that an ideal, quantum or classical, self-gravitating gas is subject to a high-energy relativistic gravothermal instability. It occurs at sufficiently-high energy and small radii, when thermal energy cannot support its own gravitational attraction. Applications of the phenomenon include neutron stars and core-collapse supernovae. I also extend the original Oppenheimer--Volkov calculation of the maximum mass limit of ideal neutron cores to the non-zero temperature regime, relevant to the whole cooling stage from a hot proto-neutron star down to the final cold state.Comment: Minor amendments to match published versio

    Optical Potentials Derived from Nucleon-Nucleon Chiral Potentials at N4LO

    Full text link
    Background: Elastic scattering is probably the main event in the interactions of nucleons with nuclei. Even if this process has been extensively studied in the last years, a consistent description, i.e., starting from microscopic two- and many-body forces connected by the same symmetries and principles, is still under development. Purpose: In a previous paper we derived a theoretical optical potential from NN chiral potentials at fourth order (N3LO). In the present work we use NN chiral potentials at fifth order (N4LO), with the purpose to check the convergence and to assess the theoretical errors associated with the truncation of the chiral expansion in the construction of an optical potential. Methods: The optical potential is derived as the first-order term within the spectator expansion of the nonrelativistic multiple scattering theory and adopting the impulse approximation and the optimum factorization approximation. Results: The pp and np Wolfenstein amplitudes and the cross section, analyzing power, and spin rotation of elastic proton scattering from 16O, 12C, and 40Ca nuclei are presented at an incident proton energy of 200 MeV. The results obtained with different versions of chiral potentials at N4LO are compared. Conclusions: Our results indicate that convergence has been reached at N4LO. The agreement with the experimental data is comparable with the agreement obtained in our previous work. We confirm that building an optical potential within chiral perturbation theory is a promising approach for describing elastic proton-nucleus scattering.Comment: Physical Review C, in prin

    Quantum Mott Transition and Multi-Furcating Criticality

    Full text link
    Phenomenological theory of the Mott transition is presented. When the critical temperature of the Mott transition is much higher than the quantum degeneracy temperature, the transition is essentially described by the Ising universality class. Below the critical temperature, phase separation or first-order transition occurs. However, if the critical point is involved in the Fermi degeneracy region, a marginal quantum critical point appears at zero temperature. The originally single Mott critical point generates subsequent many unstable fixed points through various Fermi surface instabilities induced by the Mott criticality characterized by the diverging charge susceptibility or doublon susceptibility. This occurs in marginal quantum-critical region. Charge, magnetic and superconducting instabilitites compete severely under these critical charge fluctuations. The quantum Mott transition triggers multi-furcating criticality, which goes beyond the conventional concept of multicriticality in quantum phase transitions. Near the quantum Mott transition, the criticality generically drives growth of inhomogeneous structure in the momentum space with singular points of flat dispersion on the Fermi surface. The singular points determine the quantum dynamics of the Mott transition by the dynamical exponent z=4z=4. We argue that many of filling-control Mott transitions are classified to this category. Recent numerical results as well as experimental results on strongly correlated systems including transition metal oxides, organic materials and 3^3He layer adsorbed on a substrate are consistently analyzed especially in two-dimensional systems.Comment: 28 pages including 2 figure
    • …
    corecore