13,429 research outputs found

    Assessing the Gene Content of the Megagenome: Sugar Pine (Pinus lambertiana).

    Get PDF
    Sugar pine (Pinus lambertiana Douglas) is within the subgenus Strobus with an estimated genome size of 31 Gbp. Transcriptomic resources are of particular interest in conifers due to the challenges presented in their megagenomes for gene identification. In this study, we present the first comprehensive survey of the P. lambertiana transcriptome through deep sequencing of a variety of tissue types to generate more than 2.5 billion short reads. Third generation, long reads generated through PacBio Iso-Seq have been included for the first time in conifers to combat the challenges associated with de novo transcriptome assembly. A technology comparison is provided here to contribute to the otherwise scarce comparisons of second and third generation transcriptome sequencing approaches in plant species. In addition, the transcriptome reference was essential for gene model identification and quality assessment in the parallel project responsible for sequencing and assembly of the entire genome. In this study, the transcriptomic data were also used to address questions surrounding lineage-specific Dicer-like proteins in conifers. These proteins play a role in the control of transposable element proliferation and the related genome expansion in conifers

    Application of protein structure alignments to iterated hidden Markov model protocols for structure prediction.

    Get PDF
    BackgroundOne of the most powerful methods for the prediction of protein structure from sequence information alone is the iterative construction of profile-type models. Because profiles are built from sequence alignments, the sequences included in the alignment and the method used to align them will be important to the sensitivity of the resulting profile. The inclusion of highly diverse sequences will presumably produce a more powerful profile, but distantly related sequences can be difficult to align accurately using only sequence information. Therefore, it would be expected that the use of protein structure alignments to improve the selection and alignment of diverse sequence homologs might yield improved profiles. However, the actual utility of such an approach has remained unclear.ResultsWe explored several iterative protocols for the generation of profile hidden Markov models. These protocols were tailored to allow the inclusion of protein structure alignments in the process, and were used for large-scale creation and benchmarking of structure alignment-enhanced models. We found that models using structure alignments did not provide an overall improvement over sequence-only models for superfamily-level structure predictions. However, the results also revealed that the structure alignment-enhanced models were complimentary to the sequence-only models, particularly at the edge of the "twilight zone". When the two sets of models were combined, they provided improved results over sequence-only models alone. In addition, we found that the beneficial effects of the structure alignment-enhanced models could not be realized if the structure-based alignments were replaced with sequence-based alignments. Our experiments with different iterative protocols for sequence-only models also suggested that simple protocol modifications were unable to yield equivalent improvements to those provided by the structure alignment-enhanced models. Finally, we found that models using structure alignments provided fold-level structure assignments that were superior to those produced by sequence-only models.ConclusionWhen attempting to predict the structure of remote homologs, we advocate a combined approach in which both traditional models and models incorporating structure alignments are used

    Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space?

    Get PDF
    The organization and mining of malaria genomic and post-genomic data is highly motivated by the necessity to predict and characterize new biological targets and new drugs. Biological targets are sought in a biological space designed from the genomic data from Plasmodium falciparum, but using also the millions of genomic data from other species. Drug candidates are sought in a chemical space containing the millions of small molecules stored in public and private chemolibraries. Data management should therefore be as reliable and versatile as possible. In this context, we examined five aspects of the organization and mining of malaria genomic and post-genomic data: 1) the comparison of protein sequences including compositionally atypical malaria sequences, 2) the high throughput reconstruction of molecular phylogenies, 3) the representation of biological processes particularly metabolic pathways, 4) the versatile methods to integrate genomic data, biological representations and functional profiling obtained from X-omic experiments after drug treatments and 5) the determination and prediction of protein structures and their molecular docking with drug candidate structures. Progresses toward a grid-enabled chemogenomic knowledge space are discussed.Comment: 43 pages, 4 figures, to appear in Malaria Journa
    • …
    corecore