411 research outputs found

    Two different approaches for matching nonconforming grids: the mortar element method and the FETI method.

    Get PDF
    Travail fait pendant la thèse de Catherine lacour à l'ONERA: Office National d'Etudes et de Recherches Aerospatiales 92322 Chatillon FRANCEInternational audienceWhen using domain decomposition in a finite element framework for the approximation of second order elliptic or parabolic type problems, it has become appealing to tune the mesh of each subdomain to the local behaviour of the solution. The resulting discretization being then nonconforming, different approaches have been advocated to match the admissible discrete functions. We recall here the basics of two of them, the Mortar Element method and the Finite Element Tearing and Interconnecting (FETI) method, and aim at comparing them. The conclusion, both from the theoretical and numerical point of view, is in favor of the mortar element method

    A linear domain decomposition method for two-phase flow in porous media

    Full text link
    This article is a follow up of our submitted paper [11] in which a decomposition of the Richards equation along two soil layers was discussed. A decomposed problem was formulated and a decoupling and linearisation technique was presented to solve the problem in each time step in a fixed point type iteration. This article extends these ideas to the case of two-phase in porous media and the convergence of the proposed domain decomposition method is rigorously shown.Comment: 8 page

    Spectral methods for CFD

    Get PDF
    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched
    • …
    corecore