37 research outputs found

    Domain and Geometry Agnostic CNNs for Left Atrium Segmentation in 3D Ultrasound

    Full text link
    Segmentation of the left atrium and deriving its size can help to predict and detect various cardiovascular conditions. Automation of this process in 3D Ultrasound image data is desirable, since manual delineations are time-consuming, challenging and observer-dependent. Convolutional neural networks have made improvements in computer vision and in medical image analysis. They have successfully been applied to segmentation tasks and were extended to work on volumetric data. In this paper we introduce a combined deep-learning based approach on volumetric segmentation in Ultrasound acquisitions with incorporation of prior knowledge about left atrial shape and imaging device. The results show, that including a shape prior helps the domain adaptation and the accuracy of segmentation is further increased with adversarial learning

    Symbiotic deep learning for medical image analysis with applications in real-time diagnosis for fetal ultrasound screening

    Get PDF
    The last hundred years have seen a monumental rise in the power and capability of machines to perform intelligent tasks in the stead of previously human operators. This rise is not expected to slow down any time soon and what this means for society and humanity as a whole remains to be seen. The overwhelming notion is that with the right goals in mind, the growing influence of machines on our every day tasks will enable humanity to give more attention to the truly groundbreaking challenges that we all face together. This will usher in a new age of human machine collaboration in which humans and machines may work side by side to achieve greater heights for all of humanity. Intelligent systems are useful in isolation, but the true benefits of intelligent systems come to the fore in complex systems where the interaction between humans and machines can be made seamless, and it is this goal of symbiosis between human and machine that may democratise complex knowledge, which motivates this thesis. In the recent past, datadriven methods have come to the fore and now represent the state-of-the-art in many different fields. Alongside the shift from rule-based towards data-driven methods we have also seen a shift in how humans interact with these technologies. Human computer interaction is changing in response to data-driven methods and new techniques must be developed to enable the same symbiosis between man and machine for data-driven methods as for previous formula-driven technology. We address five key challenges which need to be overcome for data-driven human-in-the-loop computing to reach maturity. These are (1) the ’Categorisation Challenge’ where we examine existing work and form a taxonomy of the different methods being utilised for data-driven human-in-the-loop computing; (2) the ’Confidence Challenge’, where data-driven methods must communicate interpretable beliefs in how confident their predictions are; (3) the ’Complexity Challenge’ where the aim of reasoned communication becomes increasingly important as the complexity of tasks and methods to solve also increases; (4) the ’Classification Challenge’ in which we look at how complex methods can be separated in order to provide greater reasoning in complex classification tasks; and finally (5) the ’Curation Challenge’ where we challenge the assumptions around bottleneck creation for the development of supervised learning methods.Open Acces

    From Fully-Supervised Single-Task to Semi-Supervised Multi-Task Deep Learning Architectures for Segmentation in Medical Imaging Applications

    Get PDF
    Medical imaging is routinely performed in clinics worldwide for the diagnosis and treatment of numerous medical conditions in children and adults. With the advent of these medical imaging modalities, radiologists can visualize both the structure of the body as well as the tissues within the body. However, analyzing these high-dimensional (2D/3D/4D) images demands a significant amount of time and effort from radiologists. Hence, there is an ever-growing need for medical image computing tools to extract relevant information from the image data to help radiologists perform efficiently. Image analysis based on machine learning has pivotal potential to improve the entire medical imaging pipeline, providing support for clinical decision-making and computer-aided diagnosis. To be effective in addressing challenging image analysis tasks such as classification, detection, registration, and segmentation, specifically for medical imaging applications, deep learning approaches have shown significant improvement in performance. While deep learning has shown its potential in a variety of medical image analysis problems including segmentation, motion estimation, etc., generalizability is still an unsolved problem and many of these successes are achieved at the cost of a large pool of datasets. For most practical applications, getting access to a copious dataset can be very difficult, often impossible. Annotation is tedious and time-consuming. This cost is further amplified when annotation must be done by a clinical expert in medical imaging applications. Additionally, the applications of deep learning in the real-world clinical setting are still limited due to the lack of reliability caused by the limited prediction capabilities of some deep learning models. Moreover, while using a CNN in an automated image analysis pipeline, it’s critical to understand which segmentation results are problematic and require further manual examination. To this extent, the estimation of uncertainty calibration in a semi-supervised setting for medical image segmentation is still rarely reported. This thesis focuses on developing and evaluating optimized machine learning models for a variety of medical imaging applications, ranging from fully-supervised, single-task learning to semi-supervised, multi-task learning that makes efficient use of annotated training data. The contributions of this dissertation are as follows: (1) developing a fully-supervised, single-task transfer learning for the surgical instrument segmentation from laparoscopic images; and (2) utilizing supervised, single-task, transfer learning for segmenting and digitally removing the surgical instruments from endoscopic/laparoscopic videos to allow the visualization of the anatomy being obscured by the tool. The tool removal algorithms use a tool segmentation mask and either instrument-free reference frames or previous instrument-containing frames to fill in (inpaint) the instrument segmentation mask; (3) developing fully-supervised, single-task learning via efficient weight pruning and learned group convolution for accurate left ventricle (LV), right ventricle (RV) blood pool and myocardium localization and segmentation from 4D cine cardiac MR images; (4) demonstrating the use of our fully-supervised memory-efficient model to generate dynamic patient-specific right ventricle (RV) models from cine cardiac MRI dataset via an unsupervised learning-based deformable registration field; and (5) integrating a Monte Carlo dropout into our fully-supervised memory-efficient model with inherent uncertainty estimation, with the overall goal to estimate the uncertainty associated with the obtained segmentation and error, as a means to flag regions that feature less than optimal segmentation results; (6) developing semi-supervised, single-task learning via self-training (through meta pseudo-labeling) in concert with a Teacher network that instructs the Student network by generating pseudo-labels given unlabeled input data; (7) proposing largely-unsupervised, multi-task learning to demonstrate the power of a simple combination of a disentanglement block, variational autoencoder (VAE), generative adversarial network (GAN), and a conditioning layer-based reconstructor for performing two of the foremost critical tasks in medical imaging — segmentation of cardiac structures and reconstruction of the cine cardiac MR images; (8) demonstrating the use of 3D semi-supervised, multi-task learning for jointly learning multiple tasks in a single backbone module – uncertainty estimation, geometric shape generation, and cardiac anatomical structure segmentation of the left atrial cavity from 3D Gadolinium-enhanced magnetic resonance (GE-MR) images. This dissertation summarizes the impact of the contributions of our work in terms of demonstrating the adaptation and use of deep learning architectures featuring different levels of supervision to build a variety of image segmentation tools and techniques that can be used across a wide spectrum of medical image computing applications centered on facilitating and promoting the wide-spread computer-integrated diagnosis and therapy data science
    corecore