4,654 research outputs found

    Large Scale Semi-supervised Object Detection using Visual and Semantic Knowledge Transfer

    Get PDF
    Deep CNN-based object detection systems have achieved remarkable success on several large-scale object detection benchmarks. However, training such detectors requires a large number of labeled bounding boxes, which are more difficult to obtain than image-level annotations. Previous work addresses this issue by transforming image-level classifiers into object detectors. This is done by modeling the differences between the two on categories with both imagelevel and bounding box annotations, and transferring this information to convert classifiers to detectors for categories without bounding box annotations. We improve this previous work by incorporating knowledge about object similarities from visual and semantic domains during the transfer process. The intuition behind our proposed method is that visually and semantically similar categories should exhibit more common transferable properties than dissimilar categories, e.g. a better detector would result by transforming the differences between a dog classifier and a dog detector onto the cat class, than would by transforming from the violin class. Experimental results on the challenging ILSVRC2013 detection dataset demonstrate that each of our proposed object similarity based knowledge transfer methods outperforms the baseline methods. We found strong evidence that visual similarity and semantic relatedness are complementary for the task, and when combined notably improve detection, achieving state-of-the-art detection performance in a semi-supervised setting

    Visual and semantic knowledge transfer for large scale semi-supervised object detection

    Get PDF
    Deep CNN-based object detection systems have achieved remarkable success on several large-scale object detection benchmarks. However, training such detectors requires a large number of labeled bounding boxes, which are more difficult to obtain than image-level annotations. Previous work addresses this issue by transforming image-level classifiers into object detectors. This is done by modeling the differences between the two on categories with both image-level and bounding box annotations, and transferring this information to convert classifiers to detectors for categories without bounding box annotations. We improve this previous work by incorporating knowledge about object similarities from visual and semantic domains during the transfer process. The intuition behind our proposed method is that visually and semantically similar categories should exhibit more common transferable properties than dissimilar categories, e.g. a better detector would result by transforming the differences between a dog classifier and a dog detector onto the cat class, than would by transforming from the violin class. Experimental results on the challenging ILSVRC2013 detection dataset demonstrate that each of our proposed object similarity based knowledge transfer methods outperforms the baseline methods. We found strong evidence that visual similarity and semantic relatedness are complementary for the task, and when combined notably improve detection, achieving state-of-the-art detection performance in a semi-supervised setting

    Learning Deep NBNN Representations for Robust Place Categorization

    Full text link
    This paper presents an approach for semantic place categorization using data obtained from RGB cameras. Previous studies on visual place recognition and classification have shown that, by considering features derived from pre-trained Convolutional Neural Networks (CNNs) in combination with part-based classification models, high recognition accuracy can be achieved, even in presence of occlusions and severe viewpoint changes. Inspired by these works, we propose to exploit local deep representations, representing images as set of regions applying a Na\"{i}ve Bayes Nearest Neighbor (NBNN) model for image classification. As opposed to previous methods where CNNs are merely used as feature extractors, our approach seamlessly integrates the NBNN model into a fully-convolutional neural network. Experimental results show that the proposed algorithm outperforms previous methods based on pre-trained CNN models and that, when employed in challenging robot place recognition tasks, it is robust to occlusions, environmental and sensor changes

    Deep learning for time series classification: a review

    Get PDF
    Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.Comment: Accepted at Data Mining and Knowledge Discover

    On the Challenges of Open World Recognitionunder Shifting Visual Domains

    Get PDF
    Robotic visual systems operating in the wild must act in unconstrained scenarios, under different environmental conditions while facing a variety of semantic concepts, including unknown ones. To this end, recent works tried to empower visual object recognition methods with the capability to i) detect unseen concepts and ii) extended their knowledge over time, as images of new semantic classes arrive. This setting, called Open World Recognition (OWR), has the goal to produce systems capable of breaking the semantic limits present in the initial training set. However, this training set imposes to the system not only its own semantic limits, but also environmental ones, due to its bias toward certain acquisition conditions that do not necessarily reflect the high variability of the real-world. This discrepancy between training and test distribution is called domain-shift. This work investigates whether OWR algorithms are effective under domain-shift, presenting the first benchmark setup for assessing fairly the performances of OWR algorithms, with and without domain-shift. We then use this benchmark to conduct analyses in various scenarios, showing how existing OWR algorithms indeed suffer a severe performance degradation when train and test distributions differ. Our analysis shows that this degradation is only slightly mitigated by coupling OWR with domain generalization techniques, indicating that the mere plug-and-play of existing algorithms is not enough to recognize new and unknown categories in unseen domains. Our results clearly point toward open issues and future research directions, that need to be investigated for building robot visual systems able to function reliably under these challenging yet very real conditions. Code available at https://github.com/DarioFontanel/OWR-VisualDomainsComment: RAL/ICRA 202

    NON-LINEAR AND SPARSE REPRESENTATIONS FOR MULTI-MODAL RECOGNITION

    Get PDF
    In the first part of this dissertation, we address the problem of representing 2D and 3D shapes. In particular, we introduce a novel implicit shape representation based on Support Vector Machine (SVM) theory. Each shape is represented by an analytic decision function obtained by training an SVM, with a Radial Basis Function (RBF) kernel, so that the interior shape points are given higher values. This empowers support vector shape (SVS) with multifold advantages. First, the representation uses a sparse subset of feature points determined by the support vectors, which significantly improves the discriminative power against noise, fragmentation and other artifacts that often come with the data. Second, the use of the RBF kernel provides scale, rotation, and translation invariant features, and allows a shape to be represented accurately regardless of its complexity. Finally, the decision function can be used to select reliable feature points. These features are described using gradients computed from highly consistent decision functions instead of conventional edges. Our experiments on 2D and 3D shapes demonstrate promising results. The availability of inexpensive 3D sensors like Kinect necessitates the design of new representation for this type of data. We present a 3D feature descriptor that represents local topologies within a set of folded concentric rings by distances from local points to a projection plane. This feature, called as Concentric Ring Signature (CORS), possesses similar computational advantages to point signatures yet provides more accurate matches. CORS produces compact and discriminative descriptors, which makes it more robust to noise and occlusions. It is also well-known to computer vision researchers that there is no universal representation that is optimal for all types of data or tasks. Sparsity has proved to be a good criterion for working with natural images. This motivates us to develop efficient sparse and non-linear learning techniques for automatically extracting useful information from visual data. Specifically, we present dictionary learning methods for sparse and redundant representations in a high-dimensional feature space. Using the kernel method, we describe how the well-known dictionary learning approaches such as the method of optimal directions and KSVD can be made non-linear. We analyse their kernel constructions and demonstrate their effectiveness through several experiments on classification problems. It is shown that non-linear dictionary learning approaches can provide significantly better discrimination compared to their linear counterparts and kernel PCA, especially when the data is corrupted by different types of degradations. Visual descriptors are often high dimensional. This results in high computational complexity for sparse learning algorithms. Motivated by this observation, we introduce a novel framework, called sparse embedding (SE), for simultaneous dimensionality reduction and dictionary learning. We formulate an optimization problem for learning a transformation from the original signal domain to a lower-dimensional one in a way that preserves the sparse structure of data. We propose an efficient optimization algorithm and present its non-linear extension based on the kernel methods. One of the key features of our method is that it is computationally efficient as the learning is done in the lower-dimensional space and it discards the irrelevant part of the signal that derails the dictionary learning process. Various experiments show that our method is able to capture the meaningful structure of data and can perform significantly better than many competitive algorithms on signal recovery and object classification tasks. In many practical applications, we are often confronted with the situation where the data that we use to train our models are different from that presented during the testing. In the final part of this dissertation, we present a novel framework for domain adaptation using a sparse and hierarchical network (DASH-N), which makes use of the old data to improve the performance of a system operating on a new domain. Our network jointly learns a hierarchy of features together with transformations that rectify the mismatch between different domains. The building block of DASH-N is the latent sparse representation. It employs a dimensionality reduction step that can prevent the data dimension from increasing too fast as traversing deeper into the hierarchy. Experimental results show that our method consistently outperforms the current state-of-the-art by a significant margin. Moreover, we found that a multi-layer {DASH-N} has an edge over the single-layer DASH-N
    • …
    corecore