197,469 research outputs found

    Modular geodesics and wedge domains in non-compactly causal symmetric spaces

    Get PDF
    We continue our investigation of the interplay between causal structures on symmetric spaces and geometric aspects of Algebraic Quantum Field Theory. We adopt the perspective that the geometric implementation of the modular group is given by the flow generated by an Euler element of the Lie algebra (an element defining a 3-grading). Since any Euler element of a semisimple Lie algebra specifies a canonical non-compactly causal symmetric space M = G/H, we turn in this paper to the geometry of this flow. Our main results concern the positivity region W of the flow (the corresponding wedge region): If G has trivial center, then W is connected, it coincides with the so-called observer domain, specified by a trajectory of the modular flow which at the same time is a causal geodesic. It can also be characterized in terms of a geometric KMS condition, and it has a natural structure of an equivariant fiber bundle over a Riemannian symmetric space that exhibits it as a real form of the crown domain of G/K . Among the tools that we need for these results are two observations of independent interest: a polar decomposition of the positivity domain and a convexity theorem for G- translates of open H -orbits in the minimal flag manifold specified by the 3-grading

    Local Causal States and Discrete Coherent Structures

    Get PDF
    Coherent structures form spontaneously in nonlinear spatiotemporal systems and are found at all spatial scales in natural phenomena from laboratory hydrodynamic flows and chemical reactions to ocean, atmosphere, and planetary climate dynamics. Phenomenologically, they appear as key components that organize the macroscopic behaviors in such systems. Despite a century of effort, they have eluded rigorous analysis and empirical prediction, with progress being made only recently. As a step in this, we present a formal theory of coherent structures in fully-discrete dynamical field theories. It builds on the notion of structure introduced by computational mechanics, generalizing it to a local spatiotemporal setting. The analysis' main tool employs the \localstates, which are used to uncover a system's hidden spatiotemporal symmetries and which identify coherent structures as spatially-localized deviations from those symmetries. The approach is behavior-driven in the sense that it does not rely on directly analyzing spatiotemporal equations of motion, rather it considers only the spatiotemporal fields a system generates. As such, it offers an unsupervised approach to discover and describe coherent structures. We illustrate the approach by analyzing coherent structures generated by elementary cellular automata, comparing the results with an earlier, dynamic-invariant-set approach that decomposes fields into domains, particles, and particle interactions.Comment: 27 pages, 10 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/dcs.ht

    Idealized computational models for auditory receptive fields

    Full text link
    This paper presents a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to enable invariance of receptive field responses under natural sound transformations and ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or the combination of a time-causal generalized Gammatone filter over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals.Comment: 55 pages, 22 figures, 3 table

    D-Sitter Space: Causal Structure, Thermodynamics, and Entropy

    Full text link
    We study the entropy of concrete de Sitter flux compactifications and deformations of them containing D-brane domain walls. We determine the relevant causal and thermodynamic properties of these "D-Sitter" deformations of de Sitter spacetimes. We find a string scale correspondence point at which the entropy localized on the D-branes (and measured by probes sent from an observer in the middle of the bubble) scales the same with large flux quantum numbers as the entropy of the original de Sitter space, and at which Bousso's bound is saturated by the D-brane degrees of freedom (up to order one coefficients) for an infinite range of times. From the geometry of a static patch of D-Sitter space and from basic relations in flux compactifications, we find support for the possibility of a low energy open string description of the static patch of de Sitter space.Comment: 46 pages, harvmac big; 14 figure

    Time-causal and time-recursive spatio-temporal receptive fields

    Get PDF
    We present an improved model and theory for time-causal and time-recursive spatio-temporal receptive fields, based on a combination of Gaussian receptive fields over the spatial domain and first-order integrators or equivalently truncated exponential filters coupled in cascade over the temporal domain. Compared to previous spatio-temporal scale-space formulations in terms of non-enhancement of local extrema or scale invariance, these receptive fields are based on different scale-space axiomatics over time by ensuring non-creation of new local extrema or zero-crossings with increasing temporal scale. Specifically, extensions are presented about (i) parameterizing the intermediate temporal scale levels, (ii) analysing the resulting temporal dynamics, (iii) transferring the theory to a discrete implementation, (iv) computing scale-normalized spatio-temporal derivative expressions for spatio-temporal feature detection and (v) computational modelling of receptive fields in the lateral geniculate nucleus (LGN) and the primary visual cortex (V1) in biological vision. We show that by distributing the intermediate temporal scale levels according to a logarithmic distribution, we obtain much faster temporal response properties (shorter temporal delays) compared to a uniform distribution. Specifically, these kernels converge very rapidly to a limit kernel possessing true self-similar scale-invariant properties over temporal scales, thereby allowing for true scale invariance over variations in the temporal scale, although the underlying temporal scale-space representation is based on a discretized temporal scale parameter. We show how scale-normalized temporal derivatives can be defined for these time-causal scale-space kernels and how the composed theory can be used for computing basic types of scale-normalized spatio-temporal derivative expressions in a computationally efficient manner.Comment: 39 pages, 12 figures, 5 tables in Journal of Mathematical Imaging and Vision, published online Dec 201

    Separable time-causal and time-recursive spatio-temporal receptive fields

    Full text link
    We present an improved model and theory for time-causal and time-recursive spatio-temporal receptive fields, obtained by a combination of Gaussian receptive fields over the spatial domain and first-order integrators or equivalently truncated exponential filters coupled in cascade over the temporal domain. Compared to previous spatio-temporal scale-space formulations in terms of non-enhancement of local extrema or scale invariance, these receptive fields are based on different scale-space axiomatics over time by ensuring non-creation of new local extrema or zero-crossings with increasing temporal scale. Specifically, extensions are presented about parameterizing the intermediate temporal scale levels, analysing the resulting temporal dynamics and transferring the theory to a discrete implementation in terms of recursive filters over time.Comment: 12 pages, 2 figures, 2 tables. arXiv admin note: substantial text overlap with arXiv:1404.203
    corecore