59,418 research outputs found

    A modal logic for reasoning on consistency and completeness of regulations

    Get PDF
    In this paper, we deal with regulations that may exist in multi-agent systems in order to regulate agent behaviour and we discuss two properties of regulations, that is consistency and completeness. After defining what consistency and completeness mean, we propose a way to consistently complete incomplete regulations. In this contribution, we extend previous works and we consider that regulations are expressed in a first order modal deontic logic

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Inferring Acceptance and Rejection in Dialogue by Default Rules of Inference

    Full text link
    This paper discusses the processes by which conversants in a dialogue can infer whether their assertions and proposals have been accepted or rejected by their conversational partners. It expands on previous work by showing that logical consistency is a necessary indicator of acceptance, but that it is not sufficient, and that logical inconsistency is sufficient as an indicator of rejection, but it is not necessary. I show how conversants can use information structure and prosody as well as logical reasoning in distinguishing between acceptances and logically consistent rejections, and relate this work to previous work on implicature and default reasoning by introducing three new classes of rejection: {\sc implicature rejections}, {\sc epistemic rejections} and {\sc deliberation rejections}. I show how these rejections are inferred as a result of default inferences, which, by other analyses, would have been blocked by the context. In order to account for these facts, I propose a model of the common ground that allows these default inferences to go through, and show how the model, originally proposed to account for the various forms of acceptance, can also model all types of rejection.Comment: 37 pages, uses fullpage, lingmacros, name

    Modelling Learning as Modelling

    Get PDF
    Economists tend to represent learning as a procedure for estimating the parameters of the "correct" econometric model. We extend this approach by assuming that agents specify as well as estimate models. Learning thus takes the form of a dynamic process of developing models using an internal language of representation where expectations are formed by forecasting with the best current model. This introduces a distinction between the form and content of the internal models which is particularly relevant for boundedly rational agents. We propose a framework for such model development which use a combination of measures: the error with respect to past data, the complexity of the model, the cost of finding the model and a measure of the model's specificity The agent has to make various trade-offs between them. A utility learning agent is given as an example

    Designing Normative Theories for Ethical and Legal Reasoning: LogiKEy Framework, Methodology, and Tool Support

    Full text link
    A framework and methodology---termed LogiKEy---for the design and engineering of ethical reasoners, normative theories and deontic logics is presented. The overall motivation is the development of suitable means for the control and governance of intelligent autonomous systems. LogiKEy's unifying formal framework is based on semantical embeddings of deontic logics, logic combinations and ethico-legal domain theories in expressive classic higher-order logic (HOL). This meta-logical approach enables the provision of powerful tool support in LogiKEy: off-the-shelf theorem provers and model finders for HOL are assisting the LogiKEy designer of ethical intelligent agents to flexibly experiment with underlying logics and their combinations, with ethico-legal domain theories, and with concrete examples---all at the same time. Continuous improvements of these off-the-shelf provers, without further ado, leverage the reasoning performance in LogiKEy. Case studies, in which the LogiKEy framework and methodology has been applied and tested, give evidence that HOL's undecidability often does not hinder efficient experimentation.Comment: 50 pages; 10 figure
    corecore