27,093 research outputs found

    Model-driven performance evaluation for service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Software quality aspects such as performance are of central importance for the integration of heterogeneous, distributed service-based systems. Empirical performance evaluation is a process of measuring and calculating performance metrics of the implemented software. We present an approach for the empirical, model-based performance evaluation of services and service compositions in the context of model-driven service engineering. Temporal databases theory is utilised for the empirical performance evaluation of model-driven developed service systems

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Knowledge-based support in Non-Destructive Testing for health monitoring of aircraft structures

    Get PDF
    Maintenance manuals include general methods and procedures for industrial maintenance and they contain information about principles of maintenance methods. Particularly, Non-Destructive Testing (NDT) methods are important for the detection of aeronautical defects and they can be used for various kinds of material and in different environments. Conventional non-destructive evaluation inspections are done at periodic maintenance checks. Usually, the list of tools used in a maintenance program is simply located in the introduction of manuals, without any precision as regards to their characteristics, except for a short description of the manufacturer and tasks in which they are employed. Improving the identification concepts of the maintenance tools is needed to manage the set of equipments and establish a system of equivalence: it is necessary to have a consistent maintenance conceptualization, flexible enough to fit all current equipment, but also all those likely to be added/used in the future. Our contribution is related to the formal specification of the system of functional equivalences that can facilitate the maintenance activities with means to determine whether a tool can be substituted for another by observing their key parameters in the identified characteristics. Reasoning mechanisms of conceptual graphs constitute the baseline elements to measure the fit or unfit between an equipment model and a maintenance activity model. Graph operations are used for processing answers to a query and this graph-based approach to the search method is in-line with the logical view of information retrieval. The methodology described supports knowledge formalization and capitalization of experienced NDT practitioners. As a result, it enables the selection of a NDT technique and outlines its capabilities with acceptable alternatives

    A Middleware Framework for Constraint-Based Deployment and Autonomic Management of Distributed Applications

    Get PDF
    We propose a middleware framework for deployment and subsequent autonomic management of component-based distributed applications. An initial deployment goal is specified using a declarative constraint language, expressing constraints over aspects such as component-host mappings and component interconnection topology. A constraint solver is used to find a configuration that satisfies the goal, and the configuration is deployed automatically. The deployed application is instrumented to allow subsequent autonomic management. If, during execution, the manager detects that the original goal is no longer being met, the satisfy/deploy process can be repeated automatically in order to generate a revised deployment that does meet the goal.Comment: Submitted to Middleware 0

    Protecting Private Data in the Cloud

    Get PDF
    Companies that process business critical and secret data are reluctant to use utility and cloud computing for the risk that their data gets stolen by rogue system administrators at the hosting company. We describe a system organization that prevents host administrators from directly accessing or installing eaves-dropping software on the machine that holds the client's valuable data. Clients are monitored via machine code probes that are inlined into the clients' programs at runtime. The system enables the cloud provider to install and remove software probes into the machine code without stopping the client's program, and it prevents the provider from installing probes not granted by the client

    Applying constraint solving to the management of distributed applications

    Get PDF
    Submitted to DOA08We present our approach for deploying and managing distributed component-based applications. A Desired State Description (DSD), written in a high-level declarative language, specifies requirements for a distributed application. Our infrastructure accepts a DSD as input, and from it automatically configures and deploys the distributed application. Subsequent violations of the original requirements are detected and, where possible, automatically rectified by reconfiguration and redeployment of the necessary application components. A constraint solving tool is used to plan deployments that meet the application requirements.Postprin

    An approach to control collaborative processes in PLM systems

    Full text link
    Companies that collaborate within the product development processes need to implement an effective management of their collaborative activities. Despite the implementation of a PLM system, the collaborative activities are not efficient as it might be expected. This paper presents an analysis of the problems related to the collaborative work using a PLM system. From this analysis, we propose an approach for improving collaborative processes within a PLM system, based on monitoring indicators. This approach leads to identify and therefore to mitigate the brakes of the collaborative work

    Challenges for the comprehensive management of cloud services in a PaaS framework

    Full text link
    The 4CaaSt project aims at developing a PaaS framework that enables flexible definition, marketing, deployment and management of Cloud-based services and applications. The major innovations proposed by 4CaaSt are the blueprint and its lifecycle management, a one stop shop for Cloud services and a PaaS level resource management featuring elasticity. 4CaaSt also provides a portfolio of ready to use Cloud native services and Cloud-aware immigrant technologies
    corecore