29,067 research outputs found

    Domain specific language for deployment of parallel applications on parallel computing platforms

    Get PDF
    To increase the computing performance the current trend is towards applying parallel computing in which parallel tasks are executed on multiple nodes. The deployment of tasks on the computing platform usually impacts the overall performance and as such needs to be modelled carefully. In the architecture design community the deployment viewpoint is an important viewpoint to support this mapping process. In general the derived deployment views are visual notations that are not amenable for run-time processing, and do not scale well for deployment of large scale parallel applications. In this paper we propose a domain specific language (DSL) for modeling the deployment of parallel applications and for providing automated support for the deployment process. The DSL is based on a metamodel that is derived after a domain analysis on parallel computing. We illustrate the application of the DSL for a traffic simulation system and provide a set of important scenarios for using the DSL. © 2014 ACM

    An Adaptable Framework to Deploy Complex Applications onto Multi-cloud Platforms

    No full text
    International audienceCloud computing is nowadays a popular technology for hosting IT services. However, deploying and reconfiguring complex applications involving multiple software components, which are distributed on many virtual machines running on single or multi-cloud platforms, is error-prone and time-consuming for human administrators. Existing deployment frameworks are most of the time either dedicated to a unique type of application (e.g. JEE applications) or address a single cloud platform (e.g. Amazon EC2). This paper presents a novel distributed application management framework for multi-cloud platforms. It provides a Domain Specific Language (DSL) which allows to describe applications and their execution environments (cloud platforms) in a hierarchical way in order to provide a fine-grained management. This framework implements an asynchronous and parallel deployment protocol which accelerates and make resilient the deployment process. A prototype has been developed to serve conducting intensive experiments with different type of applications (e.g. OSGi application and ubiquitous big data analytics for IoT) over disparate cloud models (e.g. private, hybrid, and multi-cloud), which validate the genericity of the framework. These experiments also demonstrate its efficiency comparing to existing frameworks such as Cloudify

    A Review on Software Architectures for Heterogeneous Platforms

    Full text link
    The increasing demands for computing performance have been a reality regardless of the requirements for smaller and more energy efficient devices. Throughout the years, the strategy adopted by industry was to increase the robustness of a single processor by increasing its clock frequency and mounting more transistors so more calculations could be executed. However, it is known that the physical limits of such processors are being reached, and one way to fulfill such increasing computing demands has been to adopt a strategy based on heterogeneous computing, i.e., using a heterogeneous platform containing more than one type of processor. This way, different types of tasks can be executed by processors that are specialized in them. Heterogeneous computing, however, poses a number of challenges to software engineering, especially in the architecture and deployment phases. In this paper, we conduct an empirical study that aims at discovering the state-of-the-art in software architecture for heterogeneous computing, with focus on deployment. We conduct a systematic mapping study that retrieved 28 studies, which were critically assessed to obtain an overview of the research field. We identified gaps and trends that can be used by both researchers and practitioners as guides to further investigate the topic

    A Generic Deployment Framework for Grid Computing and Distributed Applications

    Get PDF
    Deployment of distributed applications on large systems, and especially on grid infrastructures, becomes a more and more complex task. Grid users spend a lot of time to prepare, install and configure middleware and application binaries on nodes, and eventually start their applications. The problem is that the deployment process is composed of many heterogeneous tasks that have to be orchestrated in a specific correct order. As a consequence, the automatization of the deployment process is currently very difficult to reach. To address this problem, we propose in this paper a generic deployment framework allowing to automatize the execution of heterogeneous tasks composing the whole deployment process. Our approach is based on a reification as software components of all required deployment mechanisms or existing tools. Grid users only have to describe the configuration to deploy in a simple natural language instead of programming or scripting how the deployment process is executed. As a toy example, this framework is used to deploy CORBA component-based applications and OpenCCM middleware on one thousand nodes of the French Grid5000 infrastructure.Comment: The original publication is available at http://www.springerlink.co

    Service broker based on cloud service description language

    Get PDF

    Simplifying the Development, Use and Sustainability of HPC Software

    Full text link
    Developing software to undertake complex, compute-intensive scientific processes requires a challenging combination of both specialist domain knowledge and software development skills to convert this knowledge into efficient code. As computational platforms become increasingly heterogeneous and newer types of platform such as Infrastructure-as-a-Service (IaaS) cloud computing become more widely accepted for HPC computations, scientists require more support from computer scientists and resource providers to develop efficient code and make optimal use of the resources available to them. As part of the libhpc stage 1 and 2 projects we are developing a framework to provide a richer means of job specification and efficient execution of complex scientific software on heterogeneous infrastructure. The use of such frameworks has implications for the sustainability of scientific software. In this paper we set out our developing understanding of these challenges based on work carried out in the libhpc project.Comment: 4 page position paper, submission to WSSSPE13 worksho
    corecore