332,162 research outputs found

    Knowledge-based Intent Modeling for Next Generation Cellular Networks

    Full text link
    Intent-based networking (IBN) facilitates the representation of consumer expectations in a declarative and domain-independent form. However, mapping intents to service and resource models remains an open challenge. IBN requires handling existing system data in a structured yet flexible structure way. Knowledge graphs provide an efficient conceptual framework for constructing contexts and organizing known information. We utilize knowledge graphs to construct a knowledge-based for modeling of intents in the networking domain. In addition, this work also proposes a knowledge-based intent modeling and processing methodology, extending the standardized intent common model proposed by TM Forum for next-generation cellular networks and services. The proposed knowledge-based IBN approach is demonstrated for next-generation cellular services, validating its potential.Comment: Accepted at MeditCom 202

    Ontology-Based Semantic Retrieval for Education Management Systems

    Get PDF
    The traditional information retrieval technologies are based on keywords, and therefore provide limited capabilities to capture the conceptualizations associated with user needs and contents. As a new technology of information retrieval, semantic retrieval can retrieve information resource fully and precisely based on the knowledge understanding and knowledge reasoning. Ontology, which can well represent and reason about the domain knowledge, is proved to be very useful in the semantic retrieval. On this basis, in this paper, we propose a complete ontology-based semantic retrieval approach and framework for education management system. Firstly, we present some rules for constructing domain ontology from the education management system; Then, a semantic annotation method of the constructed ontology is given; Further, the ontologybased semantic retrieval algorithmis proposed; Finally, a complete framework is developed and some experiments are done. Conducted experiments show that our semantic retrieval model obtained comparable and better performance results than the traditional information retrieval technology for education management system

    Modeling Fault Propagation Paths in Power Systems: A New Framework Based on Event SNP Systems With Neurotransmitter Concentration

    Get PDF
    To reveal fault propagation paths is one of the most critical studies for the analysis of power system security; however, it is rather dif cult. This paper proposes a new framework for the fault propagation path modeling method of power systems based on membrane computing.We rst model the fault propagation paths by proposing the event spiking neural P systems (Ev-SNP systems) with neurotransmitter concentration, which can intuitively reveal the fault propagation path due to the ability of its graphics models and parallel knowledge reasoning. The neurotransmitter concentration is used to represent the probability and gravity degree of fault propagation among synapses. Then, to reduce the dimension of the Ev-SNP system and make them suitable for large-scale power systems, we propose a model reduction method for the Ev-SNP system and devise its simpli ed model by constructing single-input and single-output neurons, called reduction-SNP system (RSNP system). Moreover, we apply the RSNP system to the IEEE 14- and 118-bus systems to study their fault propagation paths. The proposed approach rst extends the SNP systems to a large-scaled application in critical infrastructures from a single element to a system-wise investigation as well as from the post-ante fault diagnosis to a new ex-ante fault propagation path prediction, and the simulation results show a new success and promising approach to the engineering domain

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Constructing Knowledge Graph for Cybersecurity Education

    Get PDF
    abstract: There currently exist various challenges in learning cybersecuirty knowledge, along with a shortage of experts in the related areas, while the demand for such talents keeps growing. Unlike other topics related to the computer system such as computer architecture and computer network, cybersecurity is a multidisciplinary topic involving scattered technologies, which yet remains blurry for its future direction. Constructing a knowledge graph (KG) in cybersecurity education is a first step to address the challenges and improve the academic learning efficiency. With the advancement of big data and Natural Language Processing (NLP) technologies, constructing large KGs and mining concepts, from unstructured text by using learning methodologies, become possible. The NLP-based KG with the semantic similarity between concepts has brought inspiration to different industrial applications, yet far from completeness in the domain expertise, including education in computer science related fields. In this research work, a KG in cybersecurity area has been constructed using machine-learning-based word embedding (i.e., mapping a word or phrase onto a vector of low dimensions) and hyperlink-based concept mining from the full dataset of words available using the latest Wikipedia dump. The different approaches in corpus training are compared and the performance based on different similarity tasks is evaluated. As a result, the best performance of trained word vectors has been applied, which is obtained by using Skip-Gram model of Word2Vec, to construct the needed KG. In order to improve the efficiency of knowledge learning, a web-based front-end is constructed to visualize the KG, which provides the convenience in browsing related materials and searching for cybersecurity-related concepts and independence relations.Dissertation/ThesisMasters Thesis Computer Science 201

    A model for information retrieval driven by conceptual spaces

    Get PDF
    A retrieval model describes the transformation of a query into a set of documents. The question is: what drives this transformation? For semantic information retrieval type of models this transformation is driven by the content and structure of the semantic models. In this case, Knowledge Organization Systems (KOSs) are the semantic models that encode the meaning employed for monolingual and cross-language retrieval. The focus of this research is the relationship between these meanings’ representations and their role and potential in augmenting existing retrieval models effectiveness. The proposed approach is unique in explicitly interpreting a semantic reference as a pointer to a concept in the semantic model that activates all its linked neighboring concepts. It is in fact the formalization of the information retrieval model and the integration of knowledge resources from the Linguistic Linked Open Data cloud that is distinctive from other approaches. The preprocessing of the semantic model using Formal Concept Analysis enables the extraction of conceptual spaces (formal contexts)that are based on sub-graphs from the original structure of the semantic model. The types of conceptual spaces built in this case are limited by the KOSs structural relations relevant to retrieval: exact match, broader, narrower, and related. They capture the definitional and relational aspects of the concepts in the semantic model. Also, each formal context is assigned an operational role in the flow of processes of the retrieval system enabling a clear path towards the implementations of monolingual and cross-lingual systems. By following this model’s theoretical description in constructing a retrieval system, evaluation results have shown statistically significant results in both monolingual and bilingual settings when no methods for query expansion were used. The test suite was run on the Cross-Language Evaluation Forum Domain Specific 2004-2006 collection with additional extensions to match the specifics of this model

    Tools for modelling support and construction of optimization applications

    Get PDF
    We argue the case for an open systems approach towards modelling and application support. We discuss how the 'usability' and 'skills' analysis naturally leads to a viable strategy for integrating application construction with modelling tools and optimizers. The role of the implementation environment is also seen to be critical in that it is retained as a building block within the resulting system

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA
    • …
    corecore