39,251 research outputs found

    Many Hard Examples in Exact Phase Transitions with Application to Generating Hard Satisfiable Instances

    Full text link
    This paper first analyzes the resolution complexity of two random CSP models (i.e. Model RB/RD) for which we can establish the existence of phase transitions and identify the threshold points exactly. By encoding CSPs into CNF formulas, it is proved that almost all instances of Model RB/RD have no tree-like resolution proofs of less than exponential size. Thus, we not only introduce new families of CNF formulas hard for resolution, which is a central task of Proof-Complexity theory, but also propose models with both many hard instances and exact phase transitions. Then, the implications of such models are addressed. It is shown both theoretically and experimentally that an application of Model RB/RD might be in the generation of hard satisfiable instances, which is not only of practical importance but also related to some open problems in cryptography such as generating one-way functions. Subsequently, a further theoretical support for the generation method is shown by establishing exponential lower bounds on the complexity of solving random satisfiable and forced satisfiable instances of RB/RD near the threshold. Finally, conclusions are presented, as well as a detailed comparison of Model RB/RD with the Hamiltonian cycle problem and random 3-SAT, which, respectively, exhibit three different kinds of phase transition behavior in NP-complete problems.Comment: 19 pages, corrected mistakes in Theorems 5 and

    A Simple Model to Generate Hard Satisfiable Instances

    Full text link
    In this paper, we try to further demonstrate that the models of random CSP instances proposed by [Xu and Li, 2000; 2003] are of theoretical and practical interest. Indeed, these models, called RB and RD, present several nice features. First, it is quite easy to generate random instances of any arity since no particular structure has to be integrated, or property enforced, in such instances. Then, the existence of an asymptotic phase transition can be guaranteed while applying a limited restriction on domain size and on constraint tightness. In that case, a threshold point can be precisely located and all instances have the guarantee to be hard at the threshold, i.e., to have an exponential tree-resolution complexity. Next, a formal analysis shows that it is possible to generate forced satisfiable instances whose hardness is similar to unforced satisfiable ones. This analysis is supported by some representative results taken from an intensive experimentation that we have carried out, using complete and incomplete search methods.Comment: Proc. of 19th IJCAI, pp.337-342, Edinburgh, Scotland, 2005. For more information, please click http://www.nlsde.buaa.edu.cn/~kexu/papers/ijcai05-abstract.ht

    Logic Programming Approaches for Representing and Solving Constraint Satisfaction Problems: A Comparison

    Full text link
    Many logic programming based approaches can be used to describe and solve combinatorial search problems. On the one hand there is constraint logic programming which computes a solution as an answer substitution to a query containing the variables of the constraint satisfaction problem. On the other hand there are systems based on stable model semantics, abductive systems, and first order logic model generators which compute solutions as models of some theory. This paper compares these different approaches from the point of view of knowledge representation (how declarative are the programs) and from the point of view of performance (how good are they at solving typical problems).Comment: 15 pages, 3 eps-figure

    OptBPPlanner: Automatic Generation of Optimized Business Process Enactment Plans

    Get PDF
    Unlike imperative models, the specifi cation of business process (BP) properties in a declarative way allows the user to specify what has to be done instead of having to specify how it has to be done, thereby facilitating the human work involved, avoiding failures, and obtaining a better optimization. Frequently, there are several enactment plans related to a specifi c declarative model, each one presenting specifi c values for different objective functions, e.g., overall completion time. As a major contribution of this work, we propose a method for the automatic generation of optimized BP enactment plans from declarative specifi cations. The proposed method is based on a constraint-based approach for planning and scheduling the BP activities. These optimized plans can then be used for different purposes like simulation, time prediction, recommendations, and generation of optimized BP models. Moreover, a tool-supported method, called OptBPPlanner, has been implemented to demonstrate the feasibility of our approach. Furthermore, the proposed method is validated through a range of test models of varying complexity.Ministerio de Ciencia e Innovación TIN2009-1371

    Symmetry Breaking for Answer Set Programming

    Full text link
    In the context of answer set programming, this work investigates symmetry detection and symmetry breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We contribute a reduction of symmetry detection to a graph automorphism problem which allows to extract symmetries of a logic program from the symmetries of the constructed coloured graph. We also propose an encoding of symmetry-breaking constraints in terms of permutation cycles and use only generators in this process which implicitly represent symmetries and always with exponential compression. These ideas are formulated as preprocessing and implemented in a completely automated flow that first detects symmetries from a given answer set program, adds symmetry-breaking constraints, and can be applied to any existing answer set solver. We demonstrate computational impact on benchmarks versus direct application of the solver. Furthermore, we explore symmetry breaking for answer set programming in two domains: first, constraint answer set programming as a novel approach to represent and solve constraint satisfaction problems, and second, distributed nonmonotonic multi-context systems. In particular, we formulate a translation-based approach to constraint answer set solving which allows for the application of our symmetry detection and symmetry breaking methods. To compare their performance with a-priori symmetry breaking techniques, we also contribute a decomposition of the global value precedence constraint that enforces domain consistency on the original constraint via the unit-propagation of an answer set solver. We evaluate both options in an empirical analysis. In the context of distributed nonmonotonic multi-context system, we develop an algorithm for distributed symmetry detection and also carry over symmetry-breaking constraints for distributed answer set programming.Comment: Diploma thesis. Vienna University of Technology, August 201
    • …
    corecore