28,063 research outputs found

    Towards trajectory anonymization: a generalization-based approach

    Get PDF
    Trajectory datasets are becoming popular due to the massive usage of GPS and locationbased services. In this paper, we address privacy issues regarding the identification of individuals in static trajectory datasets. We first adopt the notion of k-anonymity to trajectories and propose a novel generalization-based approach for anonymization of trajectories. We further show that releasing anonymized trajectories may still have some privacy leaks. Therefore we propose a randomization based reconstruction algorithm for releasing anonymized trajectory data and also present how the underlying techniques can be adapted to other anonymity standards. The experimental results on real and synthetic trajectory datasets show the effectiveness of the proposed techniques

    TimbreTron: A WaveNet(CycleGAN(CQT(Audio))) Pipeline for Musical Timbre Transfer

    Full text link
    In this work, we address the problem of musical timbre transfer, where the goal is to manipulate the timbre of a sound sample from one instrument to match another instrument while preserving other musical content, such as pitch, rhythm, and loudness. In principle, one could apply image-based style transfer techniques to a time-frequency representation of an audio signal, but this depends on having a representation that allows independent manipulation of timbre as well as high-quality waveform generation. We introduce TimbreTron, a method for musical timbre transfer which applies "image" domain style transfer to a time-frequency representation of the audio signal, and then produces a high-quality waveform using a conditional WaveNet synthesizer. We show that the Constant Q Transform (CQT) representation is particularly well-suited to convolutional architectures due to its approximate pitch equivariance. Based on human perceptual evaluations, we confirmed that TimbreTron recognizably transferred the timbre while otherwise preserving the musical content, for both monophonic and polyphonic samples.Comment: 17 pages, published as a conference paper at ICLR 201

    The wonderland of reflections

    Full text link
    A fundamental fact for the algebraic theory of constraint satisfaction problems (CSPs) over a fixed template is that pp-interpretations between at most countable \omega-categorical relational structures have two algebraic counterparts for their polymorphism clones: a semantic one via the standard algebraic operators H, S, P, and a syntactic one via clone homomorphisms (capturing identities). We provide a similar characterization which incorporates all relational constructions relevant for CSPs, that is, homomorphic equivalence and adding singletons to cores in addition to pp-interpretations. For the semantic part we introduce a new construction, called reflection, and for the syntactic part we find an appropriate weakening of clone homomorphisms, called h1 clone homomorphisms (capturing identities of height 1). As a consequence, the complexity of the CSP of an at most countable ω\omega-categorical structure depends only on the identities of height 1 satisfied in its polymorphism clone as well as the the natural uniformity thereon. This allows us in turn to formulate a new elegant dichotomy conjecture for the CSPs of reducts of finitely bounded homogeneous structures. Finally, we reveal a close connection between h1 clone homomorphisms and the notion of compatibility with projections used in the study of the lattice of interpretability types of varieties.Comment: 24 page

    Locally Non-linear Embeddings for Extreme Multi-label Learning

    Full text link
    The objective in extreme multi-label learning is to train a classifier that can automatically tag a novel data point with the most relevant subset of labels from an extremely large label set. Embedding based approaches make training and prediction tractable by assuming that the training label matrix is low-rank and hence the effective number of labels can be reduced by projecting the high dimensional label vectors onto a low dimensional linear subspace. Still, leading embedding approaches have been unable to deliver high prediction accuracies or scale to large problems as the low rank assumption is violated in most real world applications. This paper develops the X-One classifier to address both limitations. The main technical contribution in X-One is a formulation for learning a small ensemble of local distance preserving embeddings which can accurately predict infrequently occurring (tail) labels. This allows X-One to break free of the traditional low-rank assumption and boost classification accuracy by learning embeddings which preserve pairwise distances between only the nearest label vectors. We conducted extensive experiments on several real-world as well as benchmark data sets and compared our method against state-of-the-art methods for extreme multi-label classification. Experiments reveal that X-One can make significantly more accurate predictions then the state-of-the-art methods including both embeddings (by as much as 35%) as well as trees (by as much as 6%). X-One can also scale efficiently to data sets with a million labels which are beyond the pale of leading embedding methods
    corecore