4,351 research outputs found

    Field representation for optical defect resonances in multilayer microcavities using quasi-normal modes

    Get PDF
    Quasi-normal modes are used to characterize transmission resonances in 1D optical defect cavities and the related field approximations. We specialize to resonances inside the bandgap of the periodic multilayer mirrors that enclose the defect cavities. Using a template with the most relevant QNMs a variational principle permits to represent the field and the spectral transmission close to resonances

    Time-parallel iterative solvers for parabolic evolution equations

    Get PDF
    We present original time-parallel algorithms for the solution of the implicit Euler discretization of general linear parabolic evolution equations with time-dependent self-adjoint spatial operators. Motivated by the inf-sup theory of parabolic problems, we show that the standard nonsymmetric time-global system can be equivalently reformulated as an original symmetric saddle-point system that remains inf-sup stable with respect to the same natural parabolic norms. We then propose and analyse an efficient and readily implementable parallel-in-time preconditioner to be used with an inexact Uzawa method. The proposed preconditioner is non-intrusive and easy to implement in practice, and also features the key theoretical advantages of robust spectral bounds, leading to convergence rates that are independent of the number of time-steps, final time, or spatial mesh sizes, and also a theoretical parallel complexity that grows only logarithmically with respect to the number of time-steps. Numerical experiments with large-scale parallel computations show the effectiveness of the method, along with its good weak and strong scaling properties

    Reliable a-posteriori error estimators for hphp-adaptive finite element approximations of eigenvalue/eigenvector problems

    Get PDF
    We present reliable a-posteriori error estimates for hphp-adaptive finite element approximations of eigenvalue/eigenvector problems. Starting from our earlier work on hh adaptive finite element approximations we show a way to obtain reliable and efficient a-posteriori estimates in the hphp-setting. At the core of our analysis is the reduction of the problem on the analysis of the associated boundary value problem. We start from the analysis of Wohlmuth and Melenk and combine this with our a-posteriori estimation framework to obtain eigenvalue/eigenvector approximation bounds.Comment: submitte

    A computer-assisted existence proof for Emden's equation on an unbounded L-shaped domain

    Full text link
    We prove existence, non-degeneracy, and exponential decay at infinity of a non-trivial solution to Emden's equation Δu=u3-\Delta u = | u |^3 on an unbounded LL-shaped domain, subject to Dirichlet boundary conditions. Besides the direct value of this result, we also regard this solution as a building block for solutions on expanding bounded domains with corners, to be established in future work. Our proof makes heavy use of computer assistance: Starting from a numerical approximate solution, we use a fixed-point argument to prove existence of a near-by exact solution. The eigenvalue bounds established in the course of this proof also imply non-degeneracy of the solution
    corecore