9,948 research outputs found

    Integral-equation methods in steady and unsteady subsonic, transonic and supersonic aerodynamics for interdisciplinary design

    Get PDF
    Progress in the development of computational methods for steady and unsteady aerodynamics has perennially paced advancements in aeroelastic analysis and design capabilities. Since these capabilities are of growing importance in the analysis and design of high-performance aircraft, considerable effort has been directed toward the development of appropriate aerodynamic methodology. The contributions to those efforts from the integral-equations research program at the NASA Langley Research Center is reviewed. Specifically, the current scope, progress, and plans for research and development for inviscid and viscous flows are discussed, and example applications are shown in order to highlight the generality, versatility, and attractive features of this methodology

    Integrated system to perform surrogate based aerodynamic optimisation for high-lift airfoil

    Get PDF
    This work deals with the aerodynamics optimisation of a generic two-dimensional three element high-lift configuration. Although the high-lift system is applied only during take-off and landing in the low speed phase of the flight the cost efficiency of the airplane is strongly influenced by it [1]. The ultimate goal of an aircraft high lift system design team is to define the simplest configuration which, for prescribed constraints, will meet the take-off, climb, and landing requirements usually expressed in terms of maximum L/D and/or maximum CL. The ability of the calculation method to accurately predict changes in objective function value when gaps, overlaps and element deflections are varied is therefore critical. Despite advances in computer capacity, the enormous computational cost of running complex engineering simulations makes it impractical to rely exclusively on simulation for the purpose of design optimisation. To cut down the cost, surrogate models, also known as metamodels, are constructed from and then used in place of the actual simulation models. This work outlines the development of integrated systems to perform aerodynamics multi-objective optimisation for a three-element airfoil test case in high lift configuration, making use of surrogate models available in MACROS Generic Tools, which has been integrated in our design tool. Different metamodeling techniques have been compared based on multiple performance criteria. With MACROS is possible performing either optimisation of the model built with predefined training sample (GSO) or Iterative Surrogate-Based Optimization (SBO). In this first case the model is build independent from the optimisation and then use it as a black box in the optimisation process. In the second case is needed to provide the possibility to call CFD code from the optimisation process, and there is no need to build any model, it is being built internally during the optimisation process. Both approaches have been applied. A detailed analysis of the integrated design system, the methods as well as th

    Determination of wind turbine far wake using actuator disk

    Get PDF
    The growth in size of wind turbines over the last years is significant. The rotor diameter becomes somehow comparable to atmospheric boundary layer at the land surface. In this case the assumption of uniform velocity of upcoming wind cannot be valid. The aim of this paper is to create a simplified model of wind turbine rotor which can represent the aerodynamic inter-action of atmospheric boundary layer with a horizontal axis wind turbine. Such model will be also useful for the study of optimal placement of wind turbines in a wind farm when a large number of calculations is needed and when the time required for full CFD calculations be-comes prohibitive. In this study we adopt actuator disk model which takes in account with sufficient precision the influence of blade geometry on wind turbine aerodynamic performance. The proposed actuator disk model is tested in the case of horizontal axis wind turbine using wall-modelled large eddy simulation. The obtained results of aerodynamic performance and wake show the rapidity of calculation and the reliability of proposed approach

    Aerodynamics of aero-engine installation

    Get PDF
    This paper describes current progress in the development of methods to assess aero-engine airframe installation effects. The aerodynamic characteristics of isolated intakes, a typical transonic transport aircraft as well as a combination of a through-flow nacelle and aircraft configuration have been evaluated. The validation task for an isolated engine nacelle is carried out with concern for the accuracy in the assessment of intake performance descriptors such as mass flow capture ratio and drag rise Mach number. The necessary mesh and modelling requirements to simulate the nacelle aerodynamics are determined. Furthermore, the validation of the numerical model for the aircraft is performed as an extension of work that has been carried out under previous drag prediction research programmes. The validation of the aircraft model has been extended to include the geometry with through flow nacelles. Finally, the assessment of the mutual impact of the through flow nacelle and aircraft aerodynamics was performed. The drag and lift coefficient breakdown has been presented in order to identify the component sources of the drag associated with the engine installation. The paper concludes with an assessment of installation drag for through-flow nacelles and the determination of aerodynamic interference between the nacelle and the aircraft

    CHANCE: A FRENCH-GERMAN HELICOPTER CFD-PROJECT

    Get PDF
    The paper gives an overview of the CHANCE research project (partly supported by the French DPAC and DGA and the German BMWA) which was started in 1998 between the German and French Aerospace Research Centres DLR and ONERA, the University of Stuttgart and the two National Helicopter Manufacturers, Eurocopter and Eurocopter Deutschland. The objective of the project was to develop and validate CFD tools for computing the aerodynamics of the complete helicopter, accounting for the blade elasticity by coupling with blade dynamics. The validation activity of the flow solvers was achieved through intermediate stages of increasing geometry and flow modelling complexity, starting from an isolated rotor in hover, and concluding with the time-accurate simulation of a complete helicopter configuration in forward-flight. All along the research program the updated versions of the CFD codes were systematically delivered to Industry. This approach was chosen to speed up the transfer of capabilities to industry and check early enough that the products meet the expectations for applicability in the industrial environment of Eurocopter
    • 

    corecore