112 research outputs found

    Low-Complexity Lattice Reduction Aided Schnorr Euchner Sphere Decoder Detection Schemes with MMSE and SIC Pre-processing for MIMO Wireless Communication Systems

    Get PDF
    © 2021, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This is the accepted manuscript version of a conference paper which has been published in final form at https://doi.org/10.1109/IUCC-CIT-DSCI-SmartCNS55181.2021.00045The LRAD-MMSE-SIC-SE-SD (Lattice Reduction Aided Detection - Minimum Mean Squared Error-Successive Interference Cancellation - Schnorr Euchner - Sphere Decoder) detection scheme that introduces a trade-off between performance and computational complexity is proposed for Multiple-Input Multiple-Output (MIMO) in this paper. The Lenstra-Lenstra-Lovász (LLL) algorithm is employed to orthogonalise the channel matrix by transforming the signal space of the received signal into an equivalent reduced signal space. A novel Lattice Reduction aided SE-SD probing for the Closest Lattice Point in the transformed reduced signal space is hereby proposed. Correspondingly, the computational complexity of the proposed LRAD-MMSE-SIC-SE-SD detection scheme is independent of the constellation size while it is polynomial with reference to the number of antennas, and signal-to-noise-ratio (SNR). Performance results of the detection scheme indicate that SD complexity is significantly reduced at only marginal performance penalty

    A Review to Massive MIMO Detection Algorithms: Theory and Implementation

    Get PDF
    Multiple-input multiple-output (MIMO) systems entered most major standards in the past decades, including IEEE 802.11n (Wi-Fi) and long-term evolution (LTE). Moreover, MIMO techniques will be used for 5G by increasing the number of antennas at the base station end. MIMO systems enable spatial multiplexing, which has the potential of increasing the capacity of the communication channel linearly with the minimum of the number of antennas installed at both sides without sacrificing any additional bandwidth or power. To handle the space-division multiplexing (SDM), receivers have to implement new algorithms to exploit the spatial information in order to distinguish the transmitted data streams. This chapter provides an overview of the most well-known and promising MIMO detectors, as well as some unusual-yet-interesting ones. We focus on the description of the different paradigms to highlight the different approaches that have been studied. For each paradigm, we describe the mathematical framework and give the underlying philosophy. When hardware implementations are available in the literature, we provide the results reported and give the according references

    Capacity-Achieving MIMO-NOMA: Iterative LMMSE Detection

    Full text link
    This paper considers a low-complexity iterative Linear Minimum Mean Square Error (LMMSE) multi-user detector for the Multiple-Input and Multiple-Output system with Non-Orthogonal Multiple Access (MIMO-NOMA), where multiple single-antenna users simultaneously communicate with a multiple-antenna base station (BS). While LMMSE being a linear detector has a low complexity, it has suboptimal performance in multi-user detection scenario due to the mismatch between LMMSE detection and multi-user decoding. Therefore, in this paper, we provide the matching conditions between the detector and decoders for MIMO-NOMA, which are then used to derive the achievable rate of the iterative detection. We prove that a matched iterative LMMSE detector can achieve (i) the optimal capacity of symmetric MIMO-NOMA with any number of users, (ii) the optimal sum capacity of asymmetric MIMO-NOMA with any number of users, (iii) all the maximal extreme points in the capacity region of asymmetric MIMO-NOMA with any number of users, (iv) all points in the capacity region of two-user and three-user asymmetric MIMO-NOMA systems. In addition, a kind of practical low-complexity error-correcting multiuser code, called irregular repeat-accumulate code, is designed to match the LMMSE detector. Numerical results shows that the bit error rate performance of the proposed iterative LMMSE detection outperforms the state-of-art methods and is within 0.8dB from the associated capacity limit.Comment: Accepted by IEEE TSP, 16 pages, 9 figures. This is the first work that proves the low-complexity iterative receiver (Parallel Interference Cancellation) can achieve the capacity of multi-user MIMO systems. arXiv admin note: text overlap with arXiv:1604.0831

    Novel LDPC coding and decoding strategies: design, analysis, and algorithms

    Get PDF
    In this digital era, modern communication systems play an essential part in nearly every aspect of life, with examples ranging from mobile networks and satellite communications to Internet and data transfer. Unfortunately, all communication systems in a practical setting are noisy, which indicates that we can either improve the physical characteristics of the channel or find a possible systematical solution, i.e. error control coding. The history of error control coding dates back to 1948 when Claude Shannon published his celebrated work “A Mathematical Theory of Communication”, which built a framework for channel coding, source coding and information theory. For the first time, we saw evidence for the existence of channel codes, which enable reliable communication as long as the information rate of the code does not surpass the so-called channel capacity. Nevertheless, in the following 60 years none of the codes have been proven closely to approach the theoretical bound until the arrival of turbo codes and the renaissance of LDPC codes. As a strong contender of turbo codes, the advantages of LDPC codes include parallel implementation of decoding algorithms and, more crucially, graphical construction of codes. However, there are also some drawbacks to LDPC codes, e.g. significant performance degradation due to the presence of short cycles or very high decoding latency. In this thesis, we will focus on the practical realisation of finite-length LDPC codes and devise algorithms to tackle those issues. Firstly, rate-compatible (RC) LDPC codes with short/moderate block lengths are investigated on the basis of optimising the graphical structure of the tanner graph (TG), in order to achieve a variety of code rates (0.1 < R < 0.9) by only using a single encoder-decoder pair. As is widely recognised in the literature, the presence of short cycles considerably reduces the overall performance of LDPC codes which significantly limits their application in communication systems. To reduce the impact of short cycles effectively for different code rates, algorithms for counting short cycles and a graph-related metric called Extrinsic Message Degree (EMD) are applied with the development of the proposed puncturing and extension techniques. A complete set of simulations are carried out to demonstrate that the proposed RC designs can largely minimise the performance loss caused by puncturing or extension. Secondly, at the decoding end, we study novel decoding strategies which compensate for the negative effect of short cycles by reweighting part of the extrinsic messages exchanged between the nodes of a TG. The proposed reweighted belief propagation (BP) algorithms aim to implement efficient decoding, i.e. accurate signal reconstruction and low decoding latency, for LDPC codes via various design methods. A variable factor appearance probability belief propagation (VFAP-BP) algorithm is proposed along with an improved version called a locally-optimized reweighted (LOW)-BP algorithm, both of which can be employed to enhance decoding performance significantly for regular and irregular LDPC codes. More importantly, the optimisation of reweighting parameters only takes place in an offline stage so that no additional computational complexity is required during the real-time decoding process. Lastly, two iterative detection and decoding (IDD) receivers are presented for multiple-input multiple-output (MIMO) systems operating in a spatial multiplexing configuration. QR decomposition (QRD)-type IDD receivers utilise the proposed multiple-feedback (MF)-QRD or variable-M (VM)-QRD detection algorithm with a standard BP decoding algorithm, while knowledge-aided (KA)-type receivers are equipped with a simple soft parallel interference cancellation (PIC) detector and the proposed reweighted BP decoders. In the uncoded scenario, the proposed MF-QRD and VM-QRD algorithms are shown to approach optimal performance, yet require a reduced computational complexity. In the LDPC-coded scenario, simulation results have illustrated that the proposed QRD-type IDD receivers can offer near-optimal performance after a small number of detection/decoding iterations and the proposed KA-type IDD receivers significantly outperform receivers using alternative decoding algorithms, while requiring similar decoding complexity

    Untrained Neural Network based Symbol Detection for OTFS Systems

    Get PDF
    Future mobile systems will support various high-mobility scenarios (e.g., unmanned aerial vehicles and high-speed trains) with strict mobility requirements. However, the current orthogonal frequency division multiplexing (OFDM) is unsuitable for these scenarios due to high inter-carrier interference (ICI) caused by high-mobility reflectors. Orthogonal time frequency space (OTFS) was proposed to overcome this challenge. Various state-of-the-art OTFS detectors have been investigated in the literature, including classical and training-based deep neural network (DNN) detectors. Classical OTFS detectors typically utilize matrix inversion operations, resulting in high computational complexity. Training-based DNN OTFS detectors outperform classical detectors regarding symbol error rate (SER) performance. However, these detectors rely on enormous computation resources and the fidelity of datasets for the training phase, and both are expensive. Deep image prior (DIP) has recently been proposed as an untrained DNN denoiser without training datasets. In this thesis, we develop a new real-time, decoder-only DNN architecture for DIP called D-DIP denoiser. We then combine the D-DIP denoiser with Bayesian-based parallel interference cancellation (BPIC) for symbol detection, resulting in the D-DIP-BPIC OTFS detector. Our simulation results demonstrate that the proposed D-DIP-BPIC OTFS detector outperforms state-of-the-art OTFS detectors regarding SER performance and computational complexity. To further enhance the performance of the D-DIP denoiser, we introduce a novel approach by incorporating a graph representation of wireless interference knowledge into the D-DIP denoiser, leading to the GDIP denoiser. Simulation results demonstrate that the proposed GDIP denoiser requires significantly fewer iterations than the D-DIP one to denoise the received signal. The combination of GDIP and BPIC shows an excellent SER performance under various OTFS configurations

    Symbol Detection in 5G and Beyond Networks

    Get PDF
    Beyond 5G networks are expected to provide excellent quality of service in terms of delay and reliability for users, where they could travel with high mobility (e.g., 500 km/h) and achieve better spectral efficiency. To support these demands, advanced wireless architectures have been proposed, i.e., orthogonal time frequency space (OTFS) modulation and multiple-input multiple-output (MIMO), which are used to handle high mobility communications and increase the network’s spectral efficiency, respectively. Symbol detection in these advanced wireless architectures is essential to satisfy reliability requirements. On the one hand, the optimal maximum likelihood symbol detector is prohibitively complex as its complexity is non-deterministic polynomial-time (NP)-hard. On the other hand, conventional low-complexity symbol detectors pose a significant performance loss compared to the optimal detector. Thus they cannot be used to satisfy high-reliability requirements. One solution to this problem is to develop a low-complexity algorithm that can achieve near-optimal performance in a particular scenario (e.g., M-MIMO). Nevertheless, there are some cases where we cannot design low-complexity algorithms. To alleviate this issue, deep learning networks can be integrated into an existing algorithm and trained using a dataset obtained by simulating a corresponding scenario. In this thesis, we design symbol detectors for advanced wireless architectures (i.e., MIMO and OTFS) to support an excellent quality of service in terms of delay and reliability and better spectral efficiency beyond 5G networks

    Advanced Radio Frequency Antennas for Modern Communication and Medical Systems

    Get PDF
    The main objective of this book is to present novel radio frequency (RF) antennas for 5G, IOT, and medical applications. The book is divided into four sections that present the main topics of radio frequency antennas. The rapid growth in development of cellular wireless communication systems over the last twenty years has resulted in most of world population owning smartphones, smart watches, I-pads, and other RF communication devices. Efficient compact wideband antennas are crucial in RF communication devices. This book presents information on planar antennas, cavity antennas, Vivaldi antennas, phased arrays, MIMO antennas, beamforming phased array reconfigurable Pabry-Perot cavity antennas, and time modulated linear array
    • …
    corecore