68,418 research outputs found

    Domain Adaptation on Graphs by Learning Graph Topologies: Theoretical Analysis and an Algorithm

    Full text link
    Traditional machine learning algorithms assume that the training and test data have the same distribution, while this assumption does not necessarily hold in real applications. Domain adaptation methods take into account the deviations in the data distribution. In this work, we study the problem of domain adaptation on graphs. We consider a source graph and a target graph constructed with samples drawn from data manifolds. We study the problem of estimating the unknown class labels on the target graph using the label information on the source graph and the similarity between the two graphs. We particularly focus on a setting where the target label function is learnt such that its spectrum is similar to that of the source label function. We first propose a theoretical analysis of domain adaptation on graphs and present performance bounds that characterize the target classification error in terms of the properties of the graphs and the data manifolds. We show that the classification performance improves as the topologies of the graphs get more balanced, i.e., as the numbers of neighbors of different graph nodes become more proportionate, and weak edges with small weights are avoided. Our results also suggest that graph edges between too distant data samples should be avoided for good generalization performance. We then propose a graph domain adaptation algorithm inspired by our theoretical findings, which estimates the label functions while learning the source and target graph topologies at the same time. The joint graph learning and label estimation problem is formulated through an objective function relying on our performance bounds, which is minimized with an alternating optimization scheme. Experiments on synthetic and real data sets suggest that the proposed method outperforms baseline approaches

    EEG-Based Emotion Recognition Using Regularized Graph Neural Networks

    Full text link
    Electroencephalography (EEG) measures the neuronal activities in different brain regions via electrodes. Many existing studies on EEG-based emotion recognition do not fully exploit the topology of EEG channels. In this paper, we propose a regularized graph neural network (RGNN) for EEG-based emotion recognition. RGNN considers the biological topology among different brain regions to capture both local and global relations among different EEG channels. Specifically, we model the inter-channel relations in EEG signals via an adjacency matrix in a graph neural network where the connection and sparseness of the adjacency matrix are inspired by neuroscience theories of human brain organization. In addition, we propose two regularizers, namely node-wise domain adversarial training (NodeDAT) and emotion-aware distribution learning (EmotionDL), to better handle cross-subject EEG variations and noisy labels, respectively. Extensive experiments on two public datasets, SEED and SEED-IV, demonstrate the superior performance of our model than state-of-the-art models in most experimental settings. Moreover, ablation studies show that the proposed adjacency matrix and two regularizers contribute consistent and significant gain to the performance of our RGNN model. Finally, investigations on the neuronal activities reveal important brain regions and inter-channel relations for EEG-based emotion recognition

    Spectrum-Adapted Tight Graph Wavelet and Vertex-Frequency Frames

    Full text link
    We consider the problem of designing spectral graph filters for the construction of dictionaries of atoms that can be used to efficiently represent signals residing on weighted graphs. While the filters used in previous spectral graph wavelet constructions are only adapted to the length of the spectrum, the filters proposed in this paper are adapted to the distribution of graph Laplacian eigenvalues, and therefore lead to atoms with better discriminatory power. Our approach is to first characterize a family of systems of uniformly translated kernels in the graph spectral domain that give rise to tight frames of atoms generated via generalized translation on the graph. We then warp the uniform translates with a function that approximates the cumulative spectral density function of the graph Laplacian eigenvalues. We use this approach to construct computationally efficient, spectrum-adapted, tight vertex-frequency and graph wavelet frames. We give numerous examples of the resulting spectrum-adapted graph filters, and also present an illustrative example of vertex-frequency analysis using the proposed construction

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Distributed Adaptive Learning of Graph Signals

    Full text link
    The aim of this paper is to propose distributed strategies for adaptive learning of signals defined over graphs. Assuming the graph signal to be bandlimited, the method enables distributed reconstruction, with guaranteed performance in terms of mean-square error, and tracking from a limited number of sampled observations taken from a subset of vertices. A detailed mean square analysis is carried out and illustrates the role played by the sampling strategy on the performance of the proposed method. Finally, some useful strategies for distributed selection of the sampling set are provided. Several numerical results validate our theoretical findings, and illustrate the performance of the proposed method for distributed adaptive learning of signals defined over graphs.Comment: To appear in IEEE Transactions on Signal Processing, 201

    Encoding Robust Representation for Graph Generation

    Full text link
    Generative networks have made it possible to generate meaningful signals such as images and texts from simple noise. Recently, generative methods based on GAN and VAE were developed for graphs and graph signals. However, the mathematical properties of these methods are unclear, and training good generative models is difficult. This work proposes a graph generation model that uses a recent adaptation of Mallat's scattering transform to graphs. The proposed model is naturally composed of an encoder and a decoder. The encoder is a Gaussianized graph scattering transform, which is robust to signal and graph manipulation. The decoder is a simple fully connected network that is adapted to specific tasks, such as link prediction, signal generation on graphs and full graph and signal generation. The training of our proposed system is efficient since it is only applied to the decoder and the hardware requirements are moderate. Numerical results demonstrate state-of-the-art performance of the proposed system for both link prediction and graph and signal generation.Comment: 9 pages, 7 figures, 6 table

    Chebyshev and Conjugate Gradient Filters for Graph Image Denoising

    Full text link
    In 3D image/video acquisition, different views are often captured with varying noise levels across the views. In this paper, we propose a graph-based image enhancement technique that uses a higher quality view to enhance a degraded view. A depth map is utilized as auxiliary information to match the perspectives of the two views. Our method performs graph-based filtering of the noisy image by directly computing a projection of the image to be filtered onto a lower dimensional Krylov subspace of the graph Laplacian. We discuss two graph spectral denoising methods: first using Chebyshev polynomials, and second using iterations of the conjugate gradient algorithm. Our framework generalizes previously known polynomial graph filters, and we demonstrate through numerical simulations that our proposed technique produces subjectively cleaner images with about 1-3 dB improvement in PSNR over existing polynomial graph filters.Comment: 6 pages, 6 figures, accepted to 2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW
    • …
    corecore