179,591 research outputs found

    Unsupervised Domain Adaptation with Copula Models

    Full text link
    We study the task of unsupervised domain adaptation, where no labeled data from the target domain is provided during training time. To deal with the potential discrepancy between the source and target distributions, both in features and labels, we exploit a copula-based regression framework. The benefits of this approach are two-fold: (a) it allows us to model a broader range of conditional predictive densities beyond the common exponential family, (b) we show how to leverage Sklar's theorem, the essence of the copula formulation relating the joint density to the copula dependency functions, to find effective feature mappings that mitigate the domain mismatch. By transforming the data to a copula domain, we show on a number of benchmark datasets (including human emotion estimation), and using different regression models for prediction, that we can achieve a more robust and accurate estimation of target labels, compared to recently proposed feature transformation (adaptation) methods.Comment: IEEE International Workshop On Machine Learning for Signal Processing 201

    Fuzzy Rule-Based Domain Adaptation in Homogeneous and Heterogeneous Spaces

    Full text link
    © 2018 IEEE. Domain adaptation aims to leverage knowledge acquired from a related domain (called a source domain) to improve the efficiency of completing a prediction task (classification or regression) in the current domain (called the target domain), which has a different probability distribution from the source domain. Although domain adaptation has been widely studied, most existing research has focused on homogeneous domain adaptation, where both domains have identical feature spaces. Recently, a new challenge proposed in this area is heterogeneous domain adaptation where both the probability distributions and the feature spaces are different. Moreover, in both homogeneous and heterogeneous domain adaptation, the greatest efforts and major achievements have been made with classification tasks, while successful solutions for tackling regression problems are limited. This paper proposes two innovative fuzzy rule-based methods to deal with regression problems. The first method, called fuzzy homogeneous domain adaptation, handles homogeneous spaces while the second method, called fuzzy heterogeneous domain adaptation, handles heterogeneous spaces. Fuzzy rules are first generated from the source domain through a learning process; these rules, also known as knowledge, are then transferred to the target domain by establishing a latent feature space to minimize the gap between the feature spaces of the two domains. Through experiments on synthetic datasets, we demonstrate the effectiveness of both methods and discuss the impact of some of the significant parameters that affect performance. Experiments on real-world datasets also show that the proposed methods improve the performance of the target model over an existing source model or a model built using a small amount of target data

    A Fuzzy-set-based Joint Distribution Adaptation Method for Regression and its Application to Online Damage Quantification for Structural Digital Twin

    Full text link
    Online damage quantification suffers from insufficient labeled data. In this context, adopting the domain adaptation on historical labeled data from similar structures/damages to assist the current diagnosis task would be beneficial. However, most domain adaptation methods are designed for classification and cannot efficiently address damage quantification, a regression problem with continuous real-valued labels. This study first proposes a novel domain adaptation method, the Online Fuzzy-set-based Joint Distribution Adaptation for Regression, to address this challenge. By converting the continuous real-valued labels to fuzzy class labels via fuzzy sets, the conditional distribution discrepancy is measured, and domain adaptation can simultaneously consider the marginal and conditional distribution for the regression task. Furthermore, a framework of online damage quantification integrated with the proposed domain adaptation method is presented. The method has been verified with an example of a damaged helicopter panel, in which domain adaptations are conducted across different damage locations and from simulation to experiment, proving the accuracy of damage quantification can be improved significantly even in a noisy environment. It is expected that the proposed approach to be applied to the fleet-level digital twin considering the individual differences.Comment: 29 pages, 10 figure

    Granular Fuzzy Regression Domain Adaptation in Takagi-Sugeno Fuzzy Models

    Full text link
    © 1993-2012 IEEE. In classical data-driven machine learning methods, massive amounts of labeled data are required to build a high-performance prediction model. However, the amount of labeled data in many real-world applications is insufficient, so establishing a prediction model is impossible. Transfer learning has recently emerged as a solution to this problem. It exploits the knowledge accumulated in auxiliary domains to help construct prediction models in a target domain with inadequate training data. Most existing transfer learning methods solve classification tasks; only a few are devoted to regression problems. In addition, the current methods ignore the inherent phenomenon of information granularity in transfer learning. In this study, granular computing techniques are applied to transfer learning. Three granular fuzzy regression domain adaptation methods to determine the estimated values for a regression target are proposed to address three challenging cases in domain adaptation. The proposed granular fuzzy regression domain adaptation methods change the input and/or output space of the source domain's model using space transformation, so that the fuzzy rules are more compatible with the target data. Experiments on synthetic and real-world datasets validate the effectiveness of the proposed methods

    Acoustic model adaptation for ortolan bunting (Emberiza hortulana L.) song-type classification

    Get PDF
    Automatic systems for vocalization classification often require fairly large amounts of data on which to train models. However, animal vocalization data collection and transcription is a difficult and time-consuming task, so that it is expensive to create large data sets. One natural solution to this problem is the use of acoustic adaptation methods. Such methods, common in human speech recognition systems, create initial models trained on speaker independent data, then use small amounts of adaptation data to build individual-specific models. Since, as in human speech, individual vocal variability is a significant source of variation in bioacoustic data, acoustic model adaptation is naturally suited to classification in this domain as well. To demonstrate and evaluate the effectiveness of this approach, this paper presents the application of maximum likelihood linear regression adaptation to ortolan bunting (Emberiza hortulana L.) song-type classification. Classification accuracies for the adapted system are computed as a function of the amount of adaptation data and compared to caller-independent and caller-dependent systems. The experimental results indicate that given the same amount of data, supervised adaptation significantly outperforms both caller-independent and caller-dependent systems

    Label Alignment Regularization for Distribution Shift

    Full text link
    Recent work reported the label alignment property in a supervised learning setting: the vector of all labels in the dataset is mostly in the span of the top few singular vectors of the data matrix. Inspired by this observation, we derive a regularization method for unsupervised domain adaptation. Instead of regularizing representation learning as done by popular domain adaptation methods, we regularize the classifier so that the target domain predictions can to some extent ``align" with the top singular vectors of the unsupervised data matrix from the target domain. In a linear regression setting, we theoretically justify the label alignment property and characterize the optimality of the solution of our regularization by bounding its distance to the optimal solution. We conduct experiments to show that our method can work well on the label shift problems, where classic domain adaptation methods are known to fail. We also report mild improvement over domain adaptation baselines on a set of commonly seen MNIST-USPS domain adaptation tasks and on cross-lingual sentiment analysis tasks
    • …
    corecore