14 research outputs found

    Semantic Robot Programming for Taskable Goal-Directed Manipulation

    Full text link
    Autonomous robots have the potential to assist people to be more productive in factories, homes, hospitals, and similar environments. Unlike traditional industrial robots that are pre-programmed for particular tasks in controlled environments, modern autonomous robots should be able to perform arbitrary user-desired tasks. Thus, it is beneficial to provide pathways to enable users to program an arbitrary robot to perform an arbitrary task in an arbitrary world. Advances in robot Programming by Demonstration (PbD) has made it possible for end-users to program robot behavior for performing desired tasks through demonstrations. However, it still remains a challenge for users to program robot behavior in a generalizable, performant, scalable, and intuitive manner. In this dissertation, we address the problem of robot programming by demonstration in a declarative manner by introducing the concept of Semantic Robot Programming (SRP). In SRP, we focus on addressing the following challenges for robot PbD: 1) generalization across robots, tasks, and worlds, 2) robustness under partial observations of cluttered scenes, 3) efficiency in task performance as the workspace scales up, and 4) feasibly intuitive modalities of interaction for end-users to demonstrate tasks to robots. Through SRP, our objective is to enable an end-user to intuitively program a mobile manipulator by providing a workspace demonstration of the desired goal scene. We use a scene graph to semantically represent conditions on the current and goal states of the world. To estimate the scene graph given raw sensor observations, we bring together discriminative object detection and generative state estimation for the inference of object classes and poses. The proposed scene estimation method outperformed the state of the art in cluttered scenes. With SRP, we successfully enabled users to program a Fetch robot to set up a kitchen tray on a cluttered tabletop in 10 different start and goal settings. In order to scale up SRP from tabletop to large scale, we propose Contextual-Temporal Mapping (CT-Map) for semantic mapping of large scale scenes given streaming sensor observations. We model the semantic mapping problem via a Conditional Random Field (CRF), which accounts for spatial dependencies between objects. Over time, object poses and inter-object spatial relations can vary due to human activities. To deal with such dynamics, CT-Map maintains the belief over object classes and poses across an observed environment. We present CT-Map semantically mapping cluttered rooms with robustness to perceptual ambiguities, demonstrating higher accuracy on object detection and 6 DoF pose estimation compared to state-of-the-art neural network-based object detector and commonly adopted 3D registration methods. Towards SRP at the building scale, we explore notions of Generalized Object Permanence (GOP) for robots to search for objects efficiently. We state the GOP problem as the prediction of where an object can be located when it is not being directly observed by a robot. We model object permanence via a factor graph inference model, with factors representing long-term memory, short-term memory, and common sense knowledge over inter-object spatial relations. We propose the Semantic Linking Maps (SLiM) model to maintain the belief over object locations while accounting for object permanence through a CRF. Based on the belief maintained by SLiM, we present a hybrid object search strategy that enables the Fetch robot to actively search for objects on a large scale, with a higher search success rate and less search time compared to state-of-the-art search methods.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155073/1/zengzhen_1.pd

    INTEGRATION OF THE SIMULATION ENVIRONMENT FOR AUTONOMOUS ROBOTS WITH ROBOTICS MIDDLEWARE

    Get PDF
    Robotic simulators have long been used to test code and designs before any actual hardware is tested to ensure safety and efficiency. Many current robotics simulators are either closed source (calling into question the fidelity of their simulations) or are very complicated to install and use. There is a need for software that provides good quality simulation as well as being easy to use. Another issue arises when moving code from the simulator to actual hardware. In many cases, the code must be changed drastically to accommodate the final hardware on the robot, which can possibly invalidate aspects of the simulation. This defense describes methods and techniques for developing high fidelity graphical and physical simulation of autonomous robotic vehicles that is simple to use as well as having minimal distinction between simulated hardware, and actual hardware. These techniques and methods were proven by the development of the Simulation Environment for Autonomous Robots (SEAR) described here. SEAR is a 3-dimensional open source robotics simulator written by Adam Harris in Java that provides high fidelity graphical and physical simulations of user-designed vehicles running user-defined code in user-designed virtual terrain. Multiple simulated sensors are available and include a GPS, triple axis accelerometer, triple axis gyroscope, a compass with declination calculation, LIDAR, and a class of distance sensors that includes RADAR, SONAR, Ultrasonic and infrared. Several of these sensors have been validated against real-world sensors and other simulation software

    Efficient Dense Registration, Segmentation, and Modeling Methods for RGB-D Environment Perception

    Get PDF
    One perspective for artificial intelligence research is to build machines that perform tasks autonomously in our complex everyday environments. This setting poses challenges to the development of perception skills: A robot should be able to perceive its location and objects in its surrounding, while the objects and the robot itself could also be moving. Objects may not only be composed of rigid parts, but could be non-rigidly deformable or appear in a variety of similar shapes. Furthermore, it could be relevant to the task to observe object semantics. For a robot acting fluently and immediately, these perception challenges demand efficient methods. This theses presents novel approaches to robot perception with RGB-D sensors. It develops efficient registration, segmentation, and modeling methods for scene and object perception. We propose multi-resolution surfel maps as a concise representation for RGB-D measurements. We develop probabilistic registration methods that handle rigid scenes, scenes with multiple rigid parts that move differently, and scenes that undergo non-rigid deformations. We use these methods to learn and perceive 3D models of scenes and objects in both static and dynamic environments. For learning models of static scenes, we propose a real-time capable simultaneous localization and mapping approach. It aligns key views in RGB-D video using our rigid registration method and optimizes the pose graph of the key views. The acquired models are then perceived in live images through detection and tracking within a Bayesian filtering framework. An assumption frequently made for environment mapping is that the observed scene remains static during the mapping process. Through rigid multi-body registration, we take advantage of releasing this assumption: Our registration method segments views into parts that move independently between the views and simultaneously estimates their motion. Within simultaneous motion segmentation, localization, and mapping, we separate scenes into objects by their motion. Our approach acquires 3D models of objects and concurrently infers hierarchical part relations between them using probabilistic reasoning. It can be applied for interactive learning of objects and their part decomposition. Endowing robots with manipulation skills for a large variety of objects is a tedious endeavor if the skill is programmed for every instance of an object class. Furthermore, slight deformations of an instance could not be handled by an inflexible program. Deformable registration is useful to perceive such shape variations, e.g., between specific instances of a tool. We develop an efficient deformable registration method and apply it for the transfer of robot manipulation skills between varying object instances. On the object-class level, we segment images using random decision forest classifiers in real-time. The probabilistic labelings of individual images are fused in 3D semantic maps within a Bayesian framework. We combine our object-class segmentation method with simultaneous localization and mapping to achieve online semantic mapping in real-time. The methods developed in this thesis are evaluated in experiments on publicly available benchmark datasets and novel own datasets. We publicly demonstrate several of our perception approaches within integrated robot systems in the mobile manipulation context.Effiziente Dichte Registrierungs-, Segmentierungs- und Modellierungsmethoden für die RGB-D Umgebungswahrnehmung In dieser Arbeit beschäftigen wir uns mit Herausforderungen der visuellen Wahrnehmung für intelligente Roboter in Alltagsumgebungen. Solche Roboter sollen sich selbst in ihrer Umgebung zurechtfinden, und Wissen über den Verbleib von Objekten erwerben können. Die Schwierigkeit dieser Aufgaben erhöht sich in dynamischen Umgebungen, in denen ein Roboter die Bewegung einzelner Teile differenzieren und auch wahrnehmen muss, wie sich diese Teile bewegen. Bewegt sich ein Roboter selbständig in dieser Umgebung, muss er auch seine eigene Bewegung von der Veränderung der Umgebung unterscheiden. Szenen können sich aber nicht nur durch die Bewegung starrer Teile verändern. Auch die Teile selbst können ihre Form in nicht-rigider Weise ändern. Eine weitere Herausforderung stellt die semantische Interpretation von Szenengeometrie und -aussehen dar. Damit intelligente Roboter unmittelbar und flüssig handeln können, sind effiziente Algorithmen für diese Wahrnehmungsprobleme erforderlich. Im ersten Teil dieser Arbeit entwickeln wir effiziente Methoden zur Repräsentation und Registrierung von RGB-D Messungen. Zunächst stellen wir Multi-Resolutions-Oberflächenelement-Karten (engl. multi-resolution surfel maps, MRSMaps) als eine kompakte Repräsentation von RGB-D Messungen vor, die unseren effizienten Registrierungsmethoden zugrunde liegt. Bilder können effizient in dieser Repräsentation aggregiert werde, wobei auch mehrere Bilder aus verschiedenen Blickpunkten integriert werden können, um Modelle von Szenen und Objekte aus vielfältigen Ansichten darzustellen. Für die effiziente, robuste und genaue Registrierung von MRSMaps wird eine Methode vorgestellt, die Rigidheit der betrachteten Szene voraussetzt. Die Registrierung schätzt die Kamerabewegung zwischen den Bildern und gewinnt ihre Effizienz durch die Ausnutzung der kompakten multi-resolutionalen Darstellung der Karten. Die Registrierungsmethode erzielt hohe Bildverarbeitungsraten auf einer CPU. Wir demonstrieren hohe Effizienz, Genauigkeit und Robustheit unserer Methode im Vergleich zum bisherigen Stand der Forschung auf Vergleichsdatensätzen. In einem weiteren Registrierungsansatz lösen wir uns von der Annahme, dass die betrachtete Szene zwischen Bildern statisch ist. Wir erlauben nun, dass sich rigide Teile der Szene bewegen dürfen, und erweitern unser rigides Registrierungsverfahren auf diesen Fall. Unser Ansatz segmentiert das Bild in Bereiche einzelner Teile, die sich unterschiedlich zwischen Bildern bewegen. Wir demonstrieren hohe Segmentierungsgenauigkeit und Genauigkeit in der Bewegungsschätzung unter Echtzeitbedingungen für die Verarbeitung. Schließlich entwickeln wir ein Verfahren für die Wahrnehmung von nicht-rigiden Deformationen zwischen zwei MRSMaps. Auch hier nutzen wir die multi-resolutionale Struktur in den Karten für ein effizientes Registrieren von grob zu fein. Wir schlagen Methoden vor, um aus den geschätzten Deformationen die lokale Bewegung zwischen den Bildern zu berechnen. Wir evaluieren Genauigkeit und Effizienz des Registrierungsverfahrens. Der zweite Teil dieser Arbeit widmet sich der Verwendung unserer Kartenrepräsentation und Registrierungsmethoden für die Wahrnehmung von Szenen und Objekten. Wir verwenden MRSMaps und unsere rigide Registrierungsmethode, um dichte 3D Modelle von Szenen und Objekten zu lernen. Die räumlichen Beziehungen zwischen Schlüsselansichten, die wir durch Registrierung schätzen, werden in einem Simultanen Lokalisierungs- und Kartierungsverfahren (engl. simultaneous localization and mapping, SLAM) gegeneinander abgewogen, um die Blickposen der Schlüsselansichten zu schätzen. Für das Verfolgen der Kamerapose bezüglich der Modelle in Echtzeit, kombinieren wir die Genauigkeit unserer Registrierung mit der Robustheit von Partikelfiltern. Zu Beginn der Posenverfolgung, oder wenn das Objekt aufgrund von Verdeckungen oder extremen Bewegungen nicht weiter verfolgt werden konnte, initialisieren wir das Filter durch Objektdetektion. Anschließend wenden wir unsere erweiterten Registrierungsverfahren für die Wahrnehmung in nicht-rigiden Szenen und für die Übertragung von Objekthandhabungsfähigkeiten von Robotern an. Wir erweitern unseren rigiden Kartierungsansatz auf dynamische Szenen, in denen sich rigide Teile bewegen. Die Bewegungssegmente in Schlüsselansichten werden zueinander in Bezug gesetzt, um Äquivalenz- und Teilebeziehungen von Objekten probabilistisch zu inferieren, denen die Segmente entsprechen. Auch hier liefert unsere Registrierungsmethode die Bewegung der Kamera bezüglich der Objekte, die wir in einem SLAM Verfahren optimieren. Aus diesen Blickposen wiederum können wir die Bewegungssegmente in dichten Objektmodellen vereinen. Objekte einer Klasse teilen oft eine gemeinsame Topologie von funktionalen Elementen, die durch Formkorrespondenzen ermittelt werden kann. Wir verwenden unsere deformierbare Registrierung, um solche Korrespondenzen zu finden und die Handhabung eines Objektes durch einen Roboter auf neue Objektinstanzen derselben Klasse zu übertragen. Schließlich entwickeln wir einen echtzeitfähigen Ansatz, der Kategorien von Objekten in RGB-D Bildern erkennt und segmentiert. Die Segmentierung basiert auf Ensemblen randomisierter Entscheidungsbäume, die Geometrie- und Texturmerkmale zur Klassifikation verwenden. Wir fusionieren Segmentierungen von Einzelbildern einer Szene aus mehreren Ansichten in einer semantischen Objektklassenkarte mit Hilfe unseres SLAM-Verfahrens. Die vorgestellten Methoden werden auf öffentlich verfügbaren Vergleichsdatensätzen und eigenen Datensätzen evaluiert. Einige unserer Ansätze wurden auch in integrierten Robotersystemen für mobile Objekthantierungsaufgaben öffentlich demonstriert. Sie waren ein wichtiger Bestandteil für das Gewinnen der RoboCup-Roboterwettbewerbe in der RoboCup@Home Liga in den Jahren 2011, 2012 und 2013

    Dynamics in Logistics

    Get PDF
    This open access book highlights the interdisciplinary aspects of logistics research. Featuring empirical, methodological, and practice-oriented articles, it addresses the modelling, planning, optimization and control of processes. Chiefly focusing on supply chains, logistics networks, production systems, and systems and facilities for material flows, the respective contributions combine research on classical supply chain management, digitalized business processes, production engineering, electrical engineering, computer science and mathematical optimization. To celebrate 25 years of interdisciplinary and collaborative research conducted at the Bremen Research Cluster for Dynamics in Logistics (LogDynamics), in this book hand-picked experts currently or formerly affiliated with the Cluster provide retrospectives, present cutting-edge research, and outline future research directions

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    Le nuage de point intelligent

    Full text link
    Discrete spatial datasets known as point clouds often lay the groundwork for decision-making applications. E.g., we can use such data as a reference for autonomous cars and robot’s navigation, as a layer for floor-plan’s creation and building’s construction, as a digital asset for environment modelling and incident prediction... Applications are numerous, and potentially increasing if we consider point clouds as digital reality assets. Yet, this expansion faces technical limitations mainly from the lack of semantic information within point ensembles. Connecting knowledge sources is still a very manual and time-consuming process suffering from error-prone human interpretation. This highlights a strong need for domain-related data analysis to create a coherent and structured information. The thesis clearly tries to solve automation problematics in point cloud processing to create intelligent environments, i.e. virtual copies that can be used/integrated in fully autonomous reasoning services. We tackle point cloud questions associated with knowledge extraction – particularly segmentation and classification – structuration, visualisation and interaction with cognitive decision systems. We propose to connect both point cloud properties and formalized knowledge to rapidly extract pertinent information using domain-centered graphs. The dissertation delivers the concept of a Smart Point Cloud (SPC) Infrastructure which serves as an interoperable and modular architecture for a unified processing. It permits an easy integration to existing workflows and a multi-domain specialization through device knowledge, analytic knowledge or domain knowledge. Concepts, algorithms, code and materials are given to replicate findings and extend current applications.Les ensembles discrets de données spatiales, appelés nuages de points, forment souvent le support principal pour des scénarios d’aide à la décision. Par exemple, nous pouvons utiliser ces données comme référence pour les voitures autonomes et la navigation des robots, comme couche pour la création de plans et la construction de bâtiments, comme actif numérique pour la modélisation de l'environnement et la prédiction d’incidents... Les applications sont nombreuses et potentiellement croissantes si l'on considère les nuages de points comme des actifs de réalité numérique. Cependant, cette expansion se heurte à des limites techniques dues principalement au manque d'information sémantique au sein des ensembles de points. La création de liens avec des sources de connaissances est encore un processus très manuel, chronophage et lié à une interprétation humaine sujette à l'erreur. Cela met en évidence la nécessité d'une analyse automatisée des données relatives au domaine étudié afin de créer une information cohérente et structurée. La thèse tente clairement de résoudre les problèmes d'automatisation dans le traitement des nuages de points pour créer des environnements intelligents, c'est-àdire des copies virtuelles qui peuvent être utilisées/intégrées dans des services de raisonnement totalement autonomes. Nous abordons plusieurs problématiques liées aux nuages de points et associées à l'extraction des connaissances - en particulier la segmentation et la classification - la structuration, la visualisation et l'interaction avec les systèmes cognitifs de décision. Nous proposons de relier à la fois les propriétés des nuages de points et les connaissances formalisées pour extraire rapidement les informations pertinentes à l'aide de graphes centrés sur le domaine. La dissertation propose le concept d'une infrastructure SPC (Smart Point Cloud) qui sert d'architecture interopérable et modulaire pour un traitement unifié. Elle permet une intégration facile aux flux de travail existants et une spécialisation multidomaine grâce aux connaissances liée aux capteurs, aux connaissances analytiques ou aux connaissances de domaine. Plusieurs concepts, algorithmes, codes et supports sont fournis pour reproduire les résultats et étendre les applications actuelles.Diskrete räumliche Datensätze, so genannte Punktwolken, bilden oft die Grundlage für Entscheidungsanwendungen. Beispielsweise können wir solche Daten als Referenz für autonome Autos und Roboternavigation, als Ebene für die Erstellung von Grundrissen und Gebäudekonstruktionen, als digitales Gut für die Umgebungsmodellierung und Ereignisprognose verwenden... Die Anwendungen sind zahlreich und nehmen potenziell zu, wenn wir Punktwolken als Digital Reality Assets betrachten. Allerdings stößt diese Erweiterung vor allem durch den Mangel an semantischen Informationen innerhalb von Punkt-Ensembles auf technische Grenzen. Die Verbindung von Wissensquellen ist immer noch ein sehr manueller und zeitaufwendiger Prozess, der unter fehleranfälliger menschlicher Interpretation leidet. Dies verdeutlicht den starken Bedarf an domänenbezogenen Datenanalysen, um eine kohärente und strukturierte Information zu schaffen. Die Arbeit versucht eindeutig, Automatisierungsprobleme in der Punktwolkenverarbeitung zu lösen, um intelligente Umgebungen zu schaffen, d.h. virtuelle Kopien, die in vollständig autonome Argumentationsdienste verwendet/integriert werden können. Wir befassen uns mit Punktwolkenfragen im Zusammenhang mit der Wissensextraktion - insbesondere Segmentierung und Klassifizierung - Strukturierung, Visualisierung und Interaktion mit kognitiven Entscheidungssystemen. Wir schlagen vor, sowohl Punktwolkeneigenschaften als auch formalisiertes Wissen zu verbinden, um schnell relevante Informationen mithilfe von domänenzentrierten Grafiken zu extrahieren. Die Dissertation liefert das Konzept einer Smart Point Cloud (SPC) Infrastruktur, die als interoperable und modulare Architektur für eine einheitliche Verarbeitung dient. Es ermöglicht eine einfache Integration in bestehende Workflows und eine multidimensionale Spezialisierung durch Gerätewissen, analytisches Wissen oder Domänenwissen. Konzepte, Algorithmen, Code und Materialien werden zur Verfügung gestellt, um Erkenntnisse zu replizieren und aktuelle Anwendungen zu erweitern

    Dynamics in Logistics

    Get PDF
    This open access book highlights the interdisciplinary aspects of logistics research. Featuring empirical, methodological, and practice-oriented articles, it addresses the modelling, planning, optimization and control of processes. Chiefly focusing on supply chains, logistics networks, production systems, and systems and facilities for material flows, the respective contributions combine research on classical supply chain management, digitalized business processes, production engineering, electrical engineering, computer science and mathematical optimization. To celebrate 25 years of interdisciplinary and collaborative research conducted at the Bremen Research Cluster for Dynamics in Logistics (LogDynamics), in this book hand-picked experts currently or formerly affiliated with the Cluster provide retrospectives, present cutting-edge research, and outline future research directions
    corecore