124 research outputs found

    Hyperspectral colon tissue cell classification

    Get PDF
    A novel algorithm to discriminate between normal and malignant tissue cells of the human colon is presented. The microscopic level images of human colon tissue cells were acquired using hyperspectral imaging technology at contiguous wavelength intervals of visible light. While hyperspectral imagery data provides a wealth of information, its large size normally means high computational processing complexity. Several methods exist to avoid the so-called curse of dimensionality and hence reduce the computational complexity. In this study, we experimented with Principal Component Analysis (PCA) and two modifications of Independent Component Analysis (ICA). In the first stage of the algorithm, the extracted components are used to separate four constituent parts of the colon tissue: nuclei, cytoplasm, lamina propria, and lumen. The segmentation is performed in an unsupervised fashion using the nearest centroid clustering algorithm. The segmented image is further used, in the second stage of the classification algorithm, to exploit the spatial relationship between the labeled constituent parts. Experimental results using supervised Support Vector Machines (SVM) classification based on multiscale morphological features reveal the discrimination between normal and malignant tissue cells with a reasonable degree of accuracy

    Hybrid spectral unmixing : using artificial neural networks for linear/non-linear switching

    Get PDF
    Spectral unmixing is a key process in identifying spectral signature of materials and quantifying their spatial distribution over an image. The linear model is expected to provide acceptable results when two assumptions are satisfied: (1) The mixing process should occur at macroscopic level and (2) Photons must interact with single material before reaching the sensor. However, these assumptions do not always hold and more complex nonlinear models are required. This study proposes a new hybrid method for switching between linear and nonlinear spectral unmixing of hyperspectral data based on artificial neural networks. The neural networks was trained with parameters within a window of the pixel under consideration. These parameters are computed to represent the diversity of the neighboring pixels and are based on the Spectral Angular Distance, Covariance and a non linearity parameter. The endmembers were extracted using Vertex Component Analysis while the abundances were estimated using the method identified by the neural networks (Vertex Component Analysis, Fully Constraint Least Square Method, Polynomial Post Nonlinear Mixing Model or Generalized Bilinear Model). Results show that the hybrid method performs better than each of the individual techniques with high overall accuracy, while the abundance estimation error is significantly lower than that obtained using the individual methods. Experiments on both synthetic dataset and real hyperspectral images demonstrated that the proposed hybrid switch method is efficient for solving spectral unmixing of hyperspectral images as compared to individual algorithms

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Hydrocarbon quantification using neural networks and deep learning based hyperspectral unmixing

    Get PDF
    Hydrocarbon (HC) spills are a global issue, which can seriously impact human life and the environment, therefore early identification and remedial measures taken at an early stage are important. Thus, current research efforts aim at remotely quantifying incipient quantities of HC mixed with soils. The increased spectral and spatial resolution of hyperspectral sensors has opened ground-breaking perspectives in many industries including remote inspection of large areas and the environment. The use of subpixel detection algorithms, and in particular the use of the mixture models, has been identified as a future advance that needs to be incorporated in remote sensing. However, there are some challenging tasks since the spectral signatures of the targets of interest may not be immediately available. Moreover, real time processing and analysis is required to support fast decision-making. Progressing in this direction, this thesis pioneers and researches novel methodologies for HC quantification capable of exceeding the limitations of existing systems in terms of reduced cost and processing time with improved accuracy. Therefore the goal of this research is to develop, implement and test different methods for improving HC detection and quantification using spectral unmixing and machine learning. An efficient hybrid switch method employing neural networks and hyperspectral is proposed and investigated. This robust method switches between state of the art hyperspectral unmixing linear and nonlinear models, respectively. This procedure is well suited for the quantification of small quantities of substances within a pixel with high accuracy as the most appropriate model is employed. Central to the proposed approach is a novel method for extracting parameters to characterise the non-linearity of the data. These parameters are fed into a feedforward neural network which decides in a pixel by pixel fashion which model is more suitable. The quantification process is fully automated by applying further classification techniques to the acquired hyperspectral images. A deep learning neural network model is designed for the quantification of HC quantities mixed with soils. A three-term backpropagation algorithm with dropout is proposed to avoid overfitting and reduce the computational complexity of the model. The above methods have been evaluated using classical repository datasets from the literature and a laboratory controlled dataset. For that, an experimental procedure has been designed to produce a labelled dataset. The data was obtained by mixing and homogenizing different soil types with HC substances, respectively and measuring the reflectance with a hyperspectral sensor. Findings from the research study reveal that the two proposed models have high performance, they are suitable for the detection and quantification of HC mixed with soils, and surpass existing methods. Improvements in sensitivity, accuracy, computational time are achieved. Thus, the proposed approaches can be used to detect HC spills at an early stage in order to mitigate significant pollution from the spill areas

    QUANTITATIVE METHODS AND DETECTION TECHNIQUES IN HYPERSPECTRAL IMAGING INVOLVING MEDICAL AND OTHER APPLICATIONS

    Get PDF
    This research using Hyperspectral imaging involves recognizing targets through spatial and spectral matching and spectral un-mixing of data ranging from remote sensing to medical imaging kernels for clinical studies based on Hyperspectral data-sets generated using the VFTHSI [Visible Fourier Transform Hyperspectral Imager], whose high resolution Si detector makes the analysis achievable. The research may be broadly classified into (I) A Physically Motivated Correlation Formalism (PMCF), which places both spatial and spectral data on an equivalent mathematical footing in the context of a specific Kernel and (II) An application in RF plasma specie detection during carbon nanotube growing process. (III) Hyperspectral analysis for assessing density and distribution of retinopathies like age related macular degeneration (ARMD) and error estimation enabling the early recognition of ARMD, which is treated as an ill-conditioned inverse imaging problem. The broad statistical scopes of this research are two fold- target recognition problems and spectral unmixing problems. All processes involve experimental and computational analysis of Hyperspectral data sets is presented, which is based on the principle of a Sagnac Interferometer, calibrated to obtain high SNR levels. PMCF computes spectral/spatial/cross moments and answers the question of how optimally the entire hypercube should be sampled and finds how many spatial-spectral pixels are required precisely for a particular target recognition. Spectral analysis of RF plasma radicals, typically Methane plasma and Argon plasma using VFTHSI has enabled better process monitoring during growth of vertically aligned multi-walled carbon nanotubes by instant registration of the chemical composition or density changes temporally, which is key since a significant correlation can be found between plasma state and structural properties. A vital focus of this thesis is towards medical Hyperspectral imaging applied to retinopathies like age related macular degeneration targets taken with a Fundus imager, which is akin to the VFTHSI. Detection of the constituent components in the diseased hyper-pigmentation area is also computed. The target or reflectance matrix is treated as a highly ill-conditioned spectral un-mixing problem, to which methodologies like inverse techniques, principal component analysis (PCA) and receiver operating curves (ROC) for precise spectral recognition of infected area. The region containing ARMD was easily distinguishable from the spectral mesh plots over the entire band-pass area. Once the location was detected the PMCF coefficients were calculated by cross correlating a target of normal oxygenated retina with the de-oxygenated one. The ROCs generated using PMCF shows 30% higher detection probability with improved accuracy than ROCs based on Spectral Angle Mapper (SAM). By spectral unmixing methods, the important endmembers/carotenoids of the MD pigment were found to be Xanthophyl and lutein, while β-carotene which showed a negative correlation in the unconstrained inverse problem is a supplement given to ARMD patients to prevent the disease and does not occur in the eye. Literature also shows degeneration of meso-zeaxanthin. Ophthalmologists may assert the presence of ARMD and commence the diagnosis process if the Xanthophyl pigment have degenerated 89.9%, while the lutein has decayed almost 80%, as found deduced computationally. This piece of current research takes it to the next level of precise investigation in the continuing process of improved clinical findings by correlating the microanatomy of the diseased fovea and shows promise of an early detection of this disease

    Error characterization of spectral products using a factorial designed experiment

    Get PDF
    The main objective of any imaging system is to collect information. Information is conveyed in remotely sensed imagery by the spatial and spectral distribution of the energy reflected/emitted from the earth. This energy is subsequently captured by an overhead imaging system. Post-processing algorithms, which rely on this spectral and spatial energy distribution, allow us to extract useful information from the collected data. Typically, spectral processing algorithms include such procedures as target detection, thematic mapping and spectral pixel unmixing. The final spectral products from these algorithms include detection maps, classification maps and endmember fraction maps. The spatial resolution, spectral sampling and signal-to-noise characteristics of a spectral imaging system share a strong relationship with one another based on the law of conservation of energy. If any one of these initial image collection parameters were changed then we would expect the accuracy of the information derived from the spectral processing algorithms to also change. The goal of this thesis study was to investigate the accuracy and effectiveness of spectral processing algorithms under different image levels of spectral resolution, spatial resolution and noise. In order to fulfill this goal a tool was developed that degrades hyperspectral images spatially, spectrally and by adding spectrally correlated noise. These degraded images were then subjected to several spectral processing algorithms. The information utility and error characterization of these degraded spectral products is assessed using algorithm-specific metrics. By adopting a factorial designed experimental approach, the joint effects of spatial resolution, spectral sampling and signal-to-noise with respect to algorithm performance was also studied. Finally, a quantitative performance comparison of the tested spectral processing algorithms was made

    Tensor-based Hyperspectral Image Processing Methodology and its Applications in Impervious Surface and Land Cover Mapping

    Get PDF
    The emergence of hyperspectral imaging provides a new perspective for Earth observation, in addition to previously available orthophoto and multispectral imagery. This thesis focused on both the new data and new methodology in the field of hyperspectral imaging. First, the application of the future hyperspectral satellite EnMAP in impervious surface area (ISA) mapping was studied. During the search for the appropriate ISA mapping procedure for the new data, the subpixel classification based on nonnegative matrix factorization (NMF) achieved the best success. The simulated EnMAP image shows great potential in urban ISA mapping with over 85% accuracy. Unfortunately, the NMF based on the linear algebra only considers the spectral information and neglects the spatial information in the original image. The recent wide interest of applying the multilinear algebra in computer vision sheds light on this problem and raised the idea of nonnegative tensor factorization (NTF). This thesis found that the NTF has more advantages over the NMF when work with medium- rather than the high-spatial-resolution hyperspectral image. Furthermore, this thesis proposed to equip the NTF-based subpixel classification methods with the variations adopted from the NMF. By adopting the variations from the NMF, the urban ISA mapping results from the NTF were improved by ~2%. Lastly, the problem known as the curse of dimensionality is an obstacle in hyperspectral image applications. The majority of current dimension reduction (DR) methods are restricted to using only the spectral information, when the spatial information is neglected. To overcome this defect, two spectral-spatial methods: patch-based and tensor-patch-based, were thoroughly studied and compared in this thesis. To date, the popularity of the two solutions remains in computer vision studies and their applications in hyperspectral DR are limited. The patch-based and tensor-patch-based variations greatly improved the quality of dimension-reduced hyperspectral images, which then improved the land cover mapping results from them. In addition, this thesis proposed to use an improved method to produce an important intermediate result in the patch-based and tensor-patch-based DR process, which further improved the land cover mapping results

    The novel method for LAI inversion using Lidar and hyperspectral data

    No full text
    For inversion of Leaf area index (LAI) in large scale, it is of great significance to integrate space-borne Lidar and optical remote sensing data effectively. In order to improve the estimation precision of leaf area index, an analyzing method based on Lidar and hyperspectral data was proposed. Through the processing of Lidar (Light Identification Detection and Ranging) and hyperspectral data, the LAI estimation model was established based on statistic analysis method in the study area. The results showed that the Lidar and hyperspectral data joint inversion model which considers the optical remote sensing of biophysical parameters can provide good estimates of LAI inversion, shows high accuracy (R2=0.8948, RMSE=0.2120),which reveals the great potential to enhance the accuracy of LAI estimation by using Lidar and hyperspectral data
    corecore