352 research outputs found

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Applications of Molecular Dynamics simulations for biomolecular systems and improvements to density-based clustering in the analysis

    Get PDF
    Molecular Dynamics simulations provide a powerful tool to study biomolecular systems with atomistic detail. The key to better understand the function and behaviour of these molecules can often be found in their structural variability. Simulations can help to expose this information that is otherwise experimentally hard or impossible to attain. This work covers two application examples for which a sampling and a characterisation of the conformational ensemble could reveal the structural basis to answer a topical research question. For the fungal toxin phalloidin—a small bicyclic peptide—observed product ratios in different cyclisation reactions could be rationalised by assessing the conformational pre-organisation of precursor fragments. For the C-type lectin receptor langerin, conformational changes induced by different side-chain protonations could deliver an explanation of the pH-dependency in the protein’s calcium-binding. The investigations were accompanied by the continued development of a density-based clustering protocol into a respective software package, which is generally well applicable for the use case of extracting conformational states from Molecular Dynamics data

    Machine Learning and Its Application to Reacting Flows

    Get PDF
    This open access book introduces and explains machine learning (ML) algorithms and techniques developed for statistical inferences on a complex process or system and their applications to simulations of chemically reacting turbulent flows. These two fields, ML and turbulent combustion, have large body of work and knowledge on their own, and this book brings them together and explain the complexities and challenges involved in applying ML techniques to simulate and study reacting flows. This is important as to the world’s total primary energy supply (TPES), since more than 90% of this supply is through combustion technologies and the non-negligible effects of combustion on environment. Although alternative technologies based on renewable energies are coming up, their shares for the TPES is are less than 5% currently and one needs a complete paradigm shift to replace combustion sources. Whether this is practical or not is entirely a different question, and an answer to this question depends on the respondent. However, a pragmatic analysis suggests that the combustion share to TPES is likely to be more than 70% even by 2070. Hence, it will be prudent to take advantage of ML techniques to improve combustion sciences and technologies so that efficient and “greener” combustion systems that are friendlier to the environment can be designed. The book covers the current state of the art in these two topics and outlines the challenges involved, merits and drawbacks of using ML for turbulent combustion simulations including avenues which can be explored to overcome the challenges. The required mathematical equations and backgrounds are discussed with ample references for readers to find further detail if they wish. This book is unique since there is not any book with similar coverage of topics, ranging from big data analysis and machine learning algorithm to their applications for combustion science and system design for energy generation

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    Simulating the nonlinear QED vacuum

    Get PDF

    Discontinuous Galerkin Spectral Element Methods for Astrophysical Flows in Multi-physics Applications

    Get PDF
    In engineering applications, discontinuous Galerkin methods (DG) have been proven to be a powerful and flexible class of high order methods for problems in computational fluid dynamics. However, the potential benefits of DG for applications in astrophysical contexts is still relatively unexplored in its entirety. To this day, a decent number of studies surveying DG for astrophysical flows have been conducted. But the adoption of DG by the astrophysics community is just beginning to gain traction and integration of DG into established, multi-physics simulation frameworks for comprehensive astrophysical modeling is still lacking. It is our firm believe, that the full potential of novel approaches for numerically solving the fluid equations only shows under the pressure of real-world simulations with all aspects of multi-physics, challenging flow configurations, resolution and runtime constraints, and efficiency metrics on high-performance systems involved. Thus, we see the pressing need to propel DG from the well-trodden path of cataloguing test results under "optimal" laboratory conditions towards the harsh and unforgiving environment of large-scale astrophysics simulations. Consequently, the core of this work is the development and deployment of a robust DG scheme solving the ideal magneto-hydrodynamics equations with multiple species on three-dimensional Cartesian grids with adaptive mesh refinement. We chose to implement DG within the venerable simulation framework FLASH, with a specific focus on multi-physics problems in astrophysics. This entails modifications of the vanilla DG scheme to make it fit seamlessly within FLASH in such a way that all other physics modules can be naturally coupled without additional implementation overhead. A key ingredient is that our DG scheme uses mean value data organized into blocks - the central data structure in FLASH. Having the opportunity to work on mean values, allows us to rely on a rock-solid, monotone Finite Volume (FV) scheme as "backup" whenever the high order DG method fails in cases when the flow gets too harsh. Finding ways to combine the two schemes in a fail-safe manner without loosing primary conservation while still maintaining high order accuracy for smooth, well-resolved flows involves a series of careful considerations, which we document in this thesis. The result of our work is a novel shock capturing scheme - a hybrid between FV and DG - with smooth transitions between low and high order fluxes according to solution smoothness estimators. We present extensive validations and test cases, specifically its interaction with multi-physics modules in FLASH such as (self-)gravity and radiative transfer. We also investigate the benefits and pitfalls of integrating end-to-end entropy stability into our numerical scheme, with special focus on highly compressible turbulent flows and shocks. Our implementation of DG in FLASH allows us to conduct preliminary yet comprehensive astrophysics simulations proving that our new solver is ready for assessments and investigations by the astrophysics community

    Logging Statements Analysis and Automation in Software Systems with Data Mining and Machine Learning Techniques

    Get PDF
    Log files are widely used to record runtime information of software systems, such as the timestamp of an event, the name or ID of the component that generated the log, and parts of the state of a task execution. The rich information of logs enables system developers (and operators) to monitor the runtime behavior of their systems and further track down system problems in development and production settings. With the ever-increasing scale and complexity of modern computing systems, the volume of logs is rapidly growing. For example, eBay reported that the rate of log generation on their servers is in the order of several petabytes per day in 2018 [17]. Therefore, the traditional way of log analysis that largely relies on manual inspection (e.g., searching for error/warning keywords or grep) has become an inefficient, a labor intensive, error-prone, and outdated task. The growth of the logs has initiated the emergence of automated tools and approaches for log mining and analysis. In parallel, the embedding of logging statements in the source code is a manual and error-prone task, and developers often might forget to add a logging statement in the software's source code. To address the logging challenge, many e orts have aimed to automate logging statements in the source code, and in addition, many tools have been proposed to perform large-scale log le analysis by use of machine learning and data mining techniques. However, the current logging process is yet mostly manual, and thus, proper placement and content of logging statements remain as challenges. To overcome these challenges, methods that aim to automate log placement and content prediction, i.e., `where and what to log', are of high interest. In addition, approaches that can automatically mine and extract insight from large-scale logs are also well sought after. Thus, in this research, we focus on predicting the log statements, and for this purpose, we perform an experimental study on open-source Java projects. We introduce a log-aware code-clone detection method to predict the location and description of logging statements. Additionally, we incorporate natural language processing (NLP) and deep learning methods to further enhance the performance of the log statements' description prediction. We also introduce deep learning based approaches for automated analysis of software logs. In particular, we analyze execution logs and extract natural language characteristics of logs to enable the application of natural language models for automated log le analysis. Then, we propose automated tools for analyzing log files and measuring the information gain from logs for different log analysis tasks such as anomaly detection. We then continue our NLP-enabled approach by leveraging the state-of-the-art language models, i.e., Transformers, to perform automated log parsing

    Digital System Design - Use of Microcontroller

    Get PDF
    Embedded systems are today, widely deployed in just about every piece of machinery from toasters to spacecraft. Embedded system designers face many challenges. They are asked to produce increasingly complex systems using the latest technologies, but these technologies are changing faster than ever. They are asked to produce better quality designs with a shorter time-to-market. They are asked to implement increasingly complex functionality but more importantly to satisfy numerous other constraints. To achieve the current goals of design, the designer must be aware with such design constraints and more importantly, the factors that have a direct effect on them.One of the challenges facing embedded system designers is the selection of the optimum processor for the application in hand; single-purpose, general-purpose or application specific. Microcontrollers are one member of the family of the application specific processors.The book concentrates on the use of microcontroller as the embedded system?s processor, and how to use it in many embedded system applications. The book covers both the hardware and software aspects needed to design using microcontroller.The book is ideal for undergraduate students and also the engineers that are working in the field of digital system design.Contents• Preface;• Process design metrics;• A systems approach to digital system design;• Introduction to microcontrollers and microprocessors;• Instructions and Instruction sets;• Machine language and assembly language;• System memory; Timers, counters and watchdog timer;• Interfacing to local devices / peripherals;• Analogue data and the analogue I/O subsystem;• Multiprocessor communications;• Serial Communications and Network-based interfaces

    Volume II: Mining Innovation

    Get PDF
    Contemporary exploitation of natural raw materials by borehole, opencast, underground, seabed, and anthropogenic deposits is closely related to, among others, geomechanics, automation, computer science, and numerical methods. More and more often, individual fields of science coexist and complement each other, contributing to lowering exploitation costs, increasing production, and reduction of the time needed to prepare and exploit the deposit. The continuous development of national economies is related to the increasing demand for energy, metal, rock, and chemical resources. Very often, exploitation is carried out in complex geological and mining conditions, which are accompanied by natural hazards such as rock bursts, methane, coal dust explosion, spontaneous combustion, water, gas, and temperature. In order to conduct a safe and economically justified operation, modern construction materials are being used more and more often in mining to support excavations, both under static and dynamic loads. The individual production stages are supported by specialized computer programs for cutting the deposit as well as for modeling the behavior of the rock mass after excavation in it. Currently, the automation and monitoring of the mining works play a very important role, which will significantly contribute to the improvement of safety conditions. In this Special Issue of Energies, we focus on innovative laboratory, numerical, and industrial research that has a positive impact on the development of safety and exploitation in mining
    corecore