6 research outputs found

    Underwater image and video dehazing with pure haze region segmentation

    Get PDF
    © 2017 The Authors Underwater scenes captured by cameras are plagued with poor contrast and a spectral distortion, which are the result of the scattering and absorptive properties of water. In this paper we present a novel dehazing method that improves visibility in images and videos by detecting and segmenting image regions that contain only water. The colour of these regions, which we refer to as pure haze regions, is similar to the haze that is removed during the dehazing process. Moreover, we propose a semantic white balancing approach for illuminant estimation that uses the dominant colour of the water to address the spectral distortion present in underwater scenes. To validate the results of our method and compare them to those obtained with state-of-the-art approaches, we perform extensive subjective evaluation tests using images captured in a variety of water types and underwater videos captured onboard an underwater vehicle

    スペクトルの線形性を考慮したハイパースペクトラル画像のノイズ除去とアンミキシングに関する研究

    Get PDF
    This study aims to generalize color line to M-dimensional spectral line feature (M>3) and introduce methods for denoising and unmixing of hyperspectral images based on the spectral linearity.For denoising, we propose a local spectral component decomposition method based on the spectral line. We first calculate the spectral line of an M-channel image, then using the line, we decompose the image into three components: a single M-channel image and two gray-scale images. By virtue of the decomposition, the noise is concentrated on the two images, thus the algorithm needs to denoise only two grayscale images, regardless of the number of channels. For unmixing, we propose an algorithm that exploits the low-rank local abundance by applying the unclear norm to the abundance matrix for local regions of spatial and abundance domains. In optimization problem, the local abundance regularizer is collaborated with the L2, 1 norm and the total variation.北九州市立大

    DOMAIN ADAPTION FOR UNCONSTRAINED FACE VERIFICATION AND IDENTIFICATION

    Get PDF
    Face recognition has been receiving consistent attention in computer vision community for over three decades. Although recent advances in deep convolutional neural networks (DCNNs) have pushed face recognition algorithms to surpass human performance in most controlled situations, the unconstrained face recognition performance is still far from satisfactory. This is mainly because the domain shift between training and test data is substantial when faces are captured under extreme pose, blur or other covariates variations. In this dissertation, we study the effects of covariates and present approaches of mitigating the domain mismatch to improve the performance of unconstrained face verification and identification. To study how covariates affect the performance of deep neural networks on the large-scale unconstrained face verification problem, we implement five state-of-the-art deep convolutional networks (DCNNs) and evaluate them on three challenging covariates datasets. In total, seven covariates are considered: pose (yaw and roll), age, facial hair, gender, indoor/outdoor, occlusion (nose and mouth visibility, and forehead visibility), and skin tone. Some of the results confirm and extend the findings of previous studies, while others are new findings that were rarely mentioned before or did not show consistent trends. In addition, we demonstrate that with the assistance of gender information, the quality of a pre-curated noisy large-scale face dataset can be further improved. Based on the results of this study, we propose four domain adaptation methods to alleviate the effects of covariates. First, since we find that pose is a key factor for performance degradation, we propose a metric learning method to alleviate the effects of pose on face verification performance. We learn a joint model for face and pose verification tasks and explicitly discourage information sharing between the identity and pose metrics. Specifically, we enforce an orthogonal regularization constraint on the learned projection matrices for the two tasks leading to making the identity metrics for face verification more pose-robust. Extensive experiments are conducted on three challenging unconstrained face datasets that show promising results compared to state-of-the-art methods. Second, to tackle the negative effects brought by image blur, we propose two approaches. The first approach is an incremental dictionary learning method to mitigate the distribution difference between sharp training data and blurred test data. Some blurred faces called supportive samples are selected, which are used for building more discriminative classification models and act as a bridge to connect the two domains. Second, we propose an unsupervised face deblurring approach based on disentangled representations. The disentanglement is achieved by splitting the content and blur features in a blurred image using content encoders and blur encoders. An adversarial loss is added on deblurred results to generate visually realistic faces. We conduct extensive experiments on two challenging face datasets that show promising results. Finally, apart from the effects of pose and blur, face verification performance also suffers from the generic domain mismatch between source and target faces. To tackle this problem, we propose a template adaptation method for template-based face verification. A template-specific metric is trained to adaptively learn the discriminative information between test templates and the negative training set, which contains subjects that are mutually exclusive to subjects in test templates. Extensive experiments on two challenging face verification datasets yield promising results compared to other competitive methods

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    Gaze-Based Human-Robot Interaction by the Brunswick Model

    Get PDF
    We present a new paradigm for human-robot interaction based on social signal processing, and in particular on the Brunswick model. Originally, the Brunswick model copes with face-to-face dyadic interaction, assuming that the interactants are communicating through a continuous exchange of non verbal social signals, in addition to the spoken messages. Social signals have to be interpreted, thanks to a proper recognition phase that considers visual and audio information. The Brunswick model allows to quantitatively evaluate the quality of the interaction using statistical tools which measure how effective is the recognition phase. In this paper we cast this theory when one of the interactants is a robot; in this case, the recognition phase performed by the robot and the human have to be revised w.r.t. the original model. The model is applied to Berrick, a recent open-source low-cost robotic head platform, where the gazing is the social signal to be considered
    corecore