29,083 research outputs found

    Advanced satellite workstation: An integrated workstation environment for operational support of satellite system planning and analysis

    Get PDF
    A prototype integrated environment, the Advanced Satellite Workstation (ASW), is described that has been developed and delivered for evaluation and operator feedback in an operational satellite control center. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, Optical Storage System, and Telemetry Data File Interface. The central mission of ASW is to provide an intelligent decision support and training environment for operator/analysts of complex systems such as satellites. There have been many workstation implementations recently which incorporate graphical telemetry displays and expert systems. ASW is a considerably broader look at intelligent, integrated environments for decision support, based upon the premise that the central features of such an environment are intelligent data access and integrated toolsets. A variety of tools have been constructed in support of this prototype environment including: an automated pass planner for scheduling vehicle support activities, architectural modeler for hierarchical simulation and analysis of satellite vehicle subsystems, multimedia-based information systems that provide an intuitive and easily accessible interface to Orbit Operations Handbook and other relevant support documentation, and a data analysis architecture that integrates user modifiable telemetry display systems, expert systems for background data analysis, and interfaces to the multimedia system via inter-process communication

    Factors shaping the evolution of electronic documentation systems

    Get PDF
    The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments

    Preventing Premature Death in the M&S Lifecycle: Lessons Learned from Resurrection and Modernization of a Space System Contamination Model

    Get PDF
    Models and simulations (M&S) are often developed to meet specific needs and unique requirements for a particular situation. Once the M&S is implemented for a specific case and questions are answered, the M&S may go dormant until a similar need arises again at a later time, perhaps months to years later. Possible modification of the M&S may be required, and issues may arise if the M&S is not well documented, captured, or available. This can severely limit the useful life of the M&S and hinder future development or enhancements. This situation occurred with an M&S tool that had been developed to determine the impact to space system performance due to the presence of molecular contaminant films accumulating on key spacecraft surfaces. The challenges and issues encountered when resurrecting, executing, and modernizing the tool will be presented as a case study. To stay ahead of tomorrows challenges, resources to create M&S tools must be utilized efficiently. Lessons learned from this case study will aid M&S developers and users in planning for proper maintenance, transfer, and capture of key M&S tools and knowledge to avoid increased cost, increased development time, and wasted resources for projects relying on M&S

    Oceans of Tomorrow sensor interoperability for in-situ ocean monitoring

    Get PDF
    The Oceans of Tomorrow (OoT) projects, funded by the European Commission’s FP7 program, are developing a new generation of sensors supporting physical, biogeochemical and biological oceanographic monitoring. The sensors range from acoustic to optical fluorometers to labs on a chip. The result is that the outputs are diverse in a variety of formats and communication methodologies. The interfaces with platforms such as floats, gliders and cable observatories are each different. Thus, sensorPeer ReviewedPostprint (author's final draft

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    MODIS information, data and control system (MIDACS) level 2 functional requirements

    Get PDF
    The MODIS Information, Data and Control System (MIDACS) Level 2 Functional Requirements Document establishes the functional requirements for MIDACS and provides a basis for the mutual understanding between the users and the designers of the EosDIS, including the requirements, operating environment, external interfaces, and development plan. In defining the requirements and scope of the system, this document describes how MIDACS will operate as an element of the EOS within the EosDIS environment. This version of the Level 2 Requirements Document follows an earlier release of a preliminary draft version. The sections on functional and performance requirements do not yet fully represent the requirements of the data system needed to achieve the scientific objectives of the MODIS instruments and science teams. Indeed, the team members have not yet been selected and the team has not yet been formed; however, it has been possible to identify many relevant requirements based on the present concept of EosDIS and through interviews and meetings with key members of the scientific community. These requirements have been grouped by functional component of the data system, and by function within each component. These requirements have been merged with the complete set of Level 1 and Level 2 context diagrams, data flow diagrams, and data dictionary

    Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1

    Get PDF
    The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization

    ADS pilot program Plan

    Get PDF
    The Applications Data Service (ADS) is a system based on an electronic data communications network which will permit scientists to share the data stored in data bases at universities and at government and private installations. It is designed to allow users to readily locate and access high quality, timely data from multiple sources. The ADS Pilot program objectives and the current plans for accomplishing those objectives are described

    Test, Control and Monitor System (TCMS) operations plan

    Get PDF
    The purpose is to provide a clear understanding of the Test, Control and Monitor System (TCMS) operating environment and to describe the method of operations for TCMS. TCMS is a complex and sophisticated checkout system focused on support of the Space Station Freedom Program (SSFP) and related activities. An understanding of the TCMS operating environment is provided and operational responsibilities are defined. NASA and the Payload Ground Operations Contractor (PGOC) will use it as a guide to manage the operation of the TCMS computer systems and associated networks and workstations. All TCMS operational functions are examined. Other plans and detailed operating procedures relating to an individual operational function are referenced within this plan. This plan augments existing Technical Support Management Directives (TSMD's), Standard Practices, and other management documentation which will be followed where applicable
    • …
    corecore