7,370 research outputs found

    Handwritten Bangla Character Recognition Using The State-of-Art Deep Convolutional Neural Networks

    Full text link
    In spite of advances in object recognition technology, Handwritten Bangla Character Recognition (HBCR) remains largely unsolved due to the presence of many ambiguous handwritten characters and excessively cursive Bangla handwritings. Even the best existing recognizers do not lead to satisfactory performance for practical applications related to Bangla character recognition and have much lower performance than those developed for English alpha-numeric characters. To improve the performance of HBCR, we herein present the application of the state-of-the-art Deep Convolutional Neural Networks (DCNN) including VGG Network, All Convolution Network (All-Conv Net), Network in Network (NiN), Residual Network, FractalNet, and DenseNet for HBCR. The deep learning approaches have the advantage of extracting and using feature information, improving the recognition of 2D shapes with a high degree of invariance to translation, scaling and other distortions. We systematically evaluated the performance of DCNN models on publicly available Bangla handwritten character dataset called CMATERdb and achieved the superior recognition accuracy when using DCNN models. This improvement would help in building an automatic HBCR system for practical applications.Comment: 12 pages,22 figures, 5 tables. arXiv admin note: text overlap with arXiv:1705.0268

    Handwritten Bangla Digit Recognition Using Deep Learning

    Full text link
    In spite of the advances in pattern recognition technology, Handwritten Bangla Character Recognition (HBCR) (such as alpha-numeric and special characters) remains largely unsolved due to the presence of many perplexing characters and excessive cursive in Bangla handwriting. Even the best existing recognizers do not lead to satisfactory performance for practical applications. To improve the performance of Handwritten Bangla Digit Recognition (HBDR), we herein present a new approach based on deep neural networks which have recently shown excellent performance in many pattern recognition and machine learning applications, but has not been throughly attempted for HBDR. We introduce Bangla digit recognition techniques based on Deep Belief Network (DBN), Convolutional Neural Networks (CNN), CNN with dropout, CNN with dropout and Gaussian filters, and CNN with dropout and Gabor filters. These networks have the advantage of extracting and using feature information, improving the recognition of two dimensional shapes with a high degree of invariance to translation, scaling and other pattern distortions. We systematically evaluated the performance of our method on publicly available Bangla numeral image database named CMATERdb 3.1.1. From experiments, we achieved 98.78% recognition rate using the proposed method: CNN with Gabor features and dropout, which outperforms the state-of-the-art algorithms for HDBR.Comment: 12 pages, 10 figures, 3 table

    Drawing and Recognizing Chinese Characters with Recurrent Neural Network

    Full text link
    Recent deep learning based approaches have achieved great success on handwriting recognition. Chinese characters are among the most widely adopted writing systems in the world. Previous research has mainly focused on recognizing handwritten Chinese characters. However, recognition is only one aspect for understanding a language, another challenging and interesting task is to teach a machine to automatically write (pictographic) Chinese characters. In this paper, we propose a framework by using the recurrent neural network (RNN) as both a discriminative model for recognizing Chinese characters and a generative model for drawing (generating) Chinese characters. To recognize Chinese characters, previous methods usually adopt the convolutional neural network (CNN) models which require transforming the online handwriting trajectory into image-like representations. Instead, our RNN based approach is an end-to-end system which directly deals with the sequential structure and does not require any domain-specific knowledge. With the RNN system (combining an LSTM and GRU), state-of-the-art performance can be achieved on the ICDAR-2013 competition database. Furthermore, under the RNN framework, a conditional generative model with character embedding is proposed for automatically drawing recognizable Chinese characters. The generated characters (in vector format) are human-readable and also can be recognized by the discriminative RNN model with high accuracy. Experimental results verify the effectiveness of using RNNs as both generative and discriminative models for the tasks of drawing and recognizing Chinese characters

    A Review of Research on Devnagari Character Recognition

    Full text link
    English Character Recognition (CR) has been extensively studied in the last half century and progressed to a level, sufficient to produce technology driven applications. But same is not the case for Indian languages which are complicated in terms of structure and computations. Rapidly growing computational power may enable the implementation of Indic CR methodologies. Digital document processing is gaining popularity for application to office and library automation, bank and postal services, publishing houses and communication technology. Devnagari being the national language of India, spoken by more than 500 million people, should be given special attention so that document retrieval and analysis of rich ancient and modern Indian literature can be effectively done. This article is intended to serve as a guide and update for the readers, working in the Devnagari Optical Character Recognition (DOCR) area. An overview of DOCR systems is presented and the available DOCR techniques are reviewed. The current status of DOCR is discussed and directions for future research are suggested.Comment: 8 pages, 1 Figure, 8 Tables, Journal pape

    Trajectory-based Radical Analysis Network for Online Handwritten Chinese Character Recognition

    Full text link
    Recently, great progress has been made for online handwritten Chinese character recognition due to the emergence of deep learning techniques. However, previous research mostly treated each Chinese character as one class without explicitly considering its inherent structure, namely the radical components with complicated geometry. In this study, we propose a novel trajectory-based radical analysis network (TRAN) to firstly identify radicals and analyze two-dimensional structures among radicals simultaneously, then recognize Chinese characters by generating captions of them based on the analysis of their internal radicals. The proposed TRAN employs recurrent neural networks (RNNs) as both an encoder and a decoder. The RNN encoder makes full use of online information by directly transforming handwriting trajectory into high-level features. The RNN decoder aims at generating the caption by detecting radicals and spatial structures through an attention model. The manner of treating a Chinese character as a two-dimensional composition of radicals can reduce the size of vocabulary and enable TRAN to possess the capability of recognizing unseen Chinese character classes, only if the corresponding radicals have been seen. Evaluated on CASIA-OLHWDB database, the proposed approach significantly outperforms the state-of-the-art whole-character modeling approach with a relative character error rate (CER) reduction of 10%. Meanwhile, for the case of recognition of 500 unseen Chinese characters, TRAN can achieve a character accuracy of about 60% while the traditional whole-character method has no capability to handle them

    Large Vocabulary Arabic Online Handwriting Recognition System

    Full text link
    Arabic handwriting is a consonantal and cursive writing. The analysis of Arabic script is further complicated due to obligatory dots/strokes that are placed above or below most letters and usually written delayed in order. Due to ambiguities and diversities of writing styles, recognition systems are generally based on a set of possible words called lexicon. When the lexicon is small, recognition accuracy is more important as the recognition time is minimal. On the other hand, recognition speed as well as the accuracy are both critical when handling large lexicons. Arabic is rich in morphology and syntax which makes its lexicon large. Therefore, a practical online handwriting recognition system should be able to handle a large lexicon with reasonable performance in terms of both accuracy and time. In this paper, we introduce a fully-fledged Hidden Markov Model (HMM) based system for Arabic online handwriting recognition that provides solutions for most of the difficulties inherent in recognizing the Arabic script. A new preprocessing technique for handling the delayed strokes is introduced. We use advanced modeling techniques for building our recognition system from the training data to provide more detailed representation for the differences between the writing units, minimize the variances between writers in the training data and have a better representation for the features space. System results are enhanced using an additional post-processing step with a higher order language model and cross-word HMM models. The system performance is evaluated using two different databases covering small and large lexicons. Our system outperforms the state-of-art systems for the small lexicon database. Furthermore, it shows promising results (accuracy and time) when supporting large lexicon with the possibility for adapting the models for specific writers to get even better results.Comment: Preprint submitted to Pattern Analysis and Applications Journa

    A Study of Sindhi Related and Arabic Script Adapted languages Recognition

    Full text link
    A large number of publications are available for the Optical Character Recognition (OCR). Significant researches, as well as articles are present for the Latin, Chinese and Japanese scripts. Arabic script is also one of mature script from OCR perspective. The adaptive languages which share Arabic script or its extended characters; still lacking the OCRs for their language. In this paper we present the efforts of researchers on Arabic and its related and adapted languages. This survey is organized in different sections, in which introduction is followed by properties of Sindhi Language. OCR process techniques and methods used by various researchers are presented. The last section is dedicated for future work and conclusion is also discussed.Comment: 11 pages, 8 Figures, Sindh Univ. Res. Jour. (Sci. Ser.

    DeepWriter: A Multi-Stream Deep CNN for Text-independent Writer Identification

    Full text link
    Text-independent writer identification is challenging due to the huge variation of written contents and the ambiguous written styles of different writers. This paper proposes DeepWriter, a deep multi-stream CNN to learn deep powerful representation for recognizing writers. DeepWriter takes local handwritten patches as input and is trained with softmax classification loss. The main contributions are: 1) we design and optimize multi-stream structure for writer identification task; 2) we introduce data augmentation learning to enhance the performance of DeepWriter; 3) we introduce a patch scanning strategy to handle text image with different lengths. In addition, we find that different languages such as English and Chinese may share common features for writer identification, and joint training can yield better performance. Experimental results on IAM and HWDB datasets show that our models achieve high identification accuracy: 99.01% on 301 writers and 97.03% on 657 writers with one English sentence input, 93.85% on 300 writers with one Chinese character input, which outperform previous methods with a large margin. Moreover, our models obtain accuracy of 98.01% on 301 writers with only 4 English alphabets as input.Comment: This article will be presented at ICFHR 201

    A Two Stage Classification Approach for Handwritten Devanagari Characters

    Full text link
    The paper presents a two stage classification approach for handwritten devanagari characters The first stage is using structural properties like shirorekha, spine in character and second stage exploits some intersection features of characters which are fed to a feedforward neural network. Simple histogram based method does not work for finding shirorekha, vertical bar (Spine) in handwritten devnagari characters. So we designed a differential distance based technique to find a near straight line for shirorekha and spine. This approach has been tested for 50000 samples and we got 89.12% succes

    Multistage Hybrid Arabic/Indian Numeral OCR System

    Full text link
    The use of OCR in postal services is not yet universal and there are still many countries that process mail sorting manually. Automated Arabic/Indian numeral Optical Character Recognition (OCR) systems for Postal services are being used in some countries, but still there are errors during the mail sorting process, thus causing a reduction in efficiency. The need to investigate fast and efficient recognition algorithms/systems is important so as to correctly read the postal codes from mail addresses and to eliminate any errors during the mail sorting stage. The objective of this study is to recognize printed numerical postal codes from mail addresses. The proposed system is a multistage hybrid system which consists of three different feature extraction methods, i.e., binary, zoning, and fuzzy features, and three different classifiers, i.e., Hamming Nets, Euclidean Distance, and Fuzzy Neural Network Classifiers. The proposed system, systematically compares the performance of each of these methods, and ensures that the numerals are recognized correctly. Comprehensive results provide a very high recognition rate, outperforming the other known developed methods in literature.Comment: IEEE Publication format, International Journal of Computer Science and Information Security, IJCSIS, Vol. 8 No. 1, April 2010, USA. ISSN 1947 5500, http://sites.google.com/site/ijcsis
    • …
    corecore