423,272 research outputs found

    Document image analysis and recognition: a survey

    Get PDF
    This paper analyzes the problems of document image recognition and the existing solutions. Document recognition algorithms have been studied for quite a long time, but despite this, currently, the topic is relevant and research continues, as evidenced by a large number of associated publications and reviews. However, most of these works and reviews are devoted to individual recognition tasks. In this review, the entire set of methods, approaches, and algorithms necessary for document recognition is considered. A preliminary systematization allowed us to distinguish groups of methods for extracting information from documents of different types: single-page and multi-page, with text and handwritten contents, with a fixed template and flexible structure, and digitalized via different ways: scanning, photographing, video recording. Here, we consider methods of document recognition and analysis applied to a wide range of tasks: identification and verification of identity, due diligence, machine learning algorithms, questionnaires, and audits. The groups of methods necessary for the recognition of a single page image are examined: the classical computer vision algorithms, i.e., keypoints, local feature descriptors, Fast Hough Transforms, image binarization, and modern neural network models for document boundary detection, document classification, document structure analysis, i.e., text blocks and tables localization, extraction and recognition of the details, post-processing of recognition results. The review provides a description of publicly available experimental data packages for training and testing recognition algorithms. Methods for optimizing the performance of document image analysis and recognition methods are described.The reported study was funded by RFBR, project number 20-17-50177. The authors thank Sc. D. Vladimir L. Arlazarov (FRC CSC RAS), Pavel Bezmaternykh (FRC CSC RAS), Elena Limonova (FRC CSC RAS), Ph. D. Dmitry Polevoy (FRC CSC RAS), Daniil Tropin (LLC “Smart Engines Service”), Yuliya Chernysheva (LLC “Smart Engines Service”), Yuliya Shemyakina (LLC “Smart Engines Service”) for valuable comments and suggestions

    Graphic Symbol Recognition using Graph Based Signature and Bayesian Network Classifier

    Full text link
    We present a new approach for recognition of complex graphic symbols in technical documents. Graphic symbol recognition is a well known challenge in the field of document image analysis and is at heart of most graphic recognition systems. Our method uses structural approach for symbol representation and statistical classifier for symbol recognition. In our system we represent symbols by their graph based signatures: a graphic symbol is vectorized and is converted to an attributed relational graph, which is used for computing a feature vector for the symbol. This signature corresponds to geometry and topology of the symbol. We learn a Bayesian network to encode joint probability distribution of symbol signatures and use it in a supervised learning scenario for graphic symbol recognition. We have evaluated our method on synthetically deformed and degraded images of pre-segmented 2D architectural and electronic symbols from GREC databases and have obtained encouraging recognition rates.Comment: 5 pages, 8 figures, Tenth International Conference on Document Analysis and Recognition (ICDAR), IEEE Computer Society, 2009, volume 10, 1325-132

    Document analysis at DFKI. - Part 1: Image analysis and text recognition

    Get PDF
    Document analysis is responsible for an essential progress in office automation. This paper is part of an overview about the combined research efforts in document analysis at the DFKI. Common to all document analysis projects is the global goal of providing a high level electronic representation of documents in terms of iconic, structural, textual, and semantic information. These symbolic document descriptions enable an "intelligent\u27; access to a document database. Currently there are three ongoing document analysis projects at DFKI: INCA, OMEGA, and PASCAL2000/PASCAL+. Though the projects pursue different goals in different application domains, they all share the same problems which have to be resolved with similar techniques. For that reason the activities in these projects are bundled to avoid redundant work. At DFKI we have divided the problem of document analysis into two main tasks, text recognition and text analysis, which themselves are divided into a set of subtasks. In a series of three research reports the work of the document analysis and office automation department at DFKI is presented. The first report discusses the problem of text recognition, the second that of text analysis. In a third report we describe our concept for a specialized document analysis knowledge representation language. The report in hand describes the activities dealing with the text recognition task. Text recognition covers the phase starting with capturing a document image up to identifying the written words. This comprises the following subtasks: preprocessing the pictorial information, segmenting into blocks, lines, words, and characters, classifying characters, and identifying the input words. For each subtask several competing solution algorithms, called specialists or knowledge sources, may exist. To efficiently control and organize these specialists an intelligent situation-based planning component is necessary, which is also described in this report. It should be mentioned that the planning component is also responsible to control the overall document analysis system instead of the text recognition phase onl

    A step towards understanding paper documents

    Get PDF
    This report focuses on analysis steps necessary for a paper document processing. It is divided in three major parts: a document image preprocessing, a knowledge-based geometric classification of the image, and a expectation-driven text recognition. It first illustrates the several low level image processing procedures providing the physical document structure of a scanned document image. Furthermore, it describes a knowledge-based approach, developed for the identification of logical objects (e.g., sender or the footnote of a letter) in a document image. The logical identifiers provide a context-restricted consideration of the containing text. While using specific logical dictionaries, a expectation-driven text recognition is possible to identify text parts of specific interest. The system has been implemented for the analysis of single-sided business letters in Common Lisp on a SUN 3/60 Workstation. It is running for a large population of different letters. The report also illustrates and discusses examples of typical results obtained by the system

    The NoisyOffice Database: A Corpus To Train Supervised Machine Learning Filters For Image Processing

    Full text link
    [EN] This paper presents the `NoisyOffice¿ database. It consists of images of printed text documents with noise mainly caused by uncleanliness from a generic office, such as coffee stains and footprints on documents or folded and wrinkled sheets with degraded printed text. This corpus is intended to train and evaluate supervised learning methods for cleaning, binarization and enhancement of noisy images of grayscale text documents. As an example, several experiments of image enhancement and binarization are presented by using deep learning techniques. Also, double-resolution images are also provided for testing super-resolution methods. The corpus is freely available at UCI Machine Learning Repository. Finally, a challenge organized by Kaggle Inc. to denoise images, using the database, is described in order to show its suitability for benchmarking of image processing systems.This research was undertaken as part of the project TIN2017-85854-C4-2-R, jointly funded by the Spanish MINECO and FEDER founds.Castro-Bleda, MJ.; España Boquera, S.; Pastor Pellicer, J.; Zamora Martínez, FJ. (2020). The NoisyOffice Database: A Corpus To Train Supervised Machine Learning Filters For Image Processing. The Computer Journal. 63(11):1658-1667. https://doi.org/10.1093/comjnl/bxz098S165816676311Bozinovic, R. M., & Srihari, S. N. (1989). Off-line cursive script word recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(1), 68-83. doi:10.1109/34.23114Plamondon, R., & Srihari, S. N. (2000). Online and off-line handwriting recognition: a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 63-84. doi:10.1109/34.824821Vinciarelli, A. (2002). A survey on off-line Cursive Word Recognition. Pattern Recognition, 35(7), 1433-1446. doi:10.1016/s0031-3203(01)00129-7Impedovo, S. (2014). More than twenty years of advancements on Frontiers in handwriting recognition. Pattern Recognition, 47(3), 916-928. doi:10.1016/j.patcog.2013.05.027Baird, H. S. (2007). The State of the Art of Document Image Degradation Modelling. Advances in Pattern Recognition, 261-279. doi:10.1007/978-1-84628-726-8_12Egmont-Petersen, M., de Ridder, D., & Handels, H. (2002). Image processing with neural networks—a review. Pattern Recognition, 35(10), 2279-2301. doi:10.1016/s0031-3203(01)00178-9Marinai, S., Gori, M., & Soda, G. (2005). Artificial neural networks for document analysis and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(1), 23-35. doi:10.1109/tpami.2005.4Rehman, A., & Saba, T. (2012). Neural networks for document image preprocessing: state of the art. Artificial Intelligence Review, 42(2), 253-273. doi:10.1007/s10462-012-9337-zLazzara, G., & Géraud, T. (2013). Efficient multiscale Sauvola’s binarization. International Journal on Document Analysis and Recognition (IJDAR), 17(2), 105-123. doi:10.1007/s10032-013-0209-0Fischer, A., Indermühle, E., Bunke, H., Viehhauser, G., & Stolz, M. (2010). Ground truth creation for handwriting recognition in historical documents. Proceedings of the 8th IAPR International Workshop on Document Analysis Systems - DAS ’10. doi:10.1145/1815330.1815331Belhedi, A., & Marcotegui, B. (2016). Adaptive scene‐text binarisation on images captured by smartphones. IET Image Processing, 10(7), 515-523. doi:10.1049/iet-ipr.2015.0695Kieu, V. C., Visani, M., Journet, N., Mullot, R., & Domenger, J. P. (2013). An efficient parametrization of character degradation model for semi-synthetic image generation. Proceedings of the 2nd International Workshop on Historical Document Imaging and Processing - HIP ’13. doi:10.1145/2501115.2501127Fischer, A., Visani, M., Kieu, V. C., & Suen, C. Y. (2013). Generation of learning samples for historical handwriting recognition using image degradation. Proceedings of the 2nd International Workshop on Historical Document Imaging and Processing - HIP ’13. doi:10.1145/2501115.2501123Journet, N., Visani, M., Mansencal, B., Van-Cuong, K., & Billy, A. (2017). DocCreator: A New Software for Creating Synthetic Ground-Truthed Document Images. Journal of Imaging, 3(4), 62. doi:10.3390/jimaging3040062Walker, D., Lund, W., & Ringger, E. (2012). A synthetic document image dataset for developing and evaluating historical document processing methods. Document Recognition and Retrieval XIX. doi:10.1117/12.912203Dong, C., Loy, C. C., He, K., & Tang, X. (2016). Image Super-Resolution Using Deep Convolutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295-307. doi:10.1109/tpami.2015.2439281Suzuki, K., Horiba, I., & Sugie, N. (2003). Neural edge enhancer for supervised edge enhancement from noisy images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12), 1582-1596. doi:10.1109/tpami.2003.1251151Hidalgo, J. L., España, S., Castro, M. J., & Pérez, J. A. (2005). Enhancement and Cleaning of Handwritten Data by Using Neural Networks. Lecture Notes in Computer Science, 376-383. doi:10.1007/11492429_46Pastor-Pellicer, J., España-Boquera, S., Zamora-Martínez, F., Afzal, M. Z., & Castro-Bleda, M. J. (2015). Insights on the Use of Convolutional Neural Networks for Document Image Binarization. Lecture Notes in Computer Science, 115-126. doi:10.1007/978-3-319-19222-2_10España-Boquera, S., Zamora-Martínez, F., Castro-Bleda, M. J., & Gorbe-Moya, J. (s. f.). Efficient BP Algorithms for General Feedforward Neural Networks. Lecture Notes in Computer Science, 327-336. doi:10.1007/978-3-540-73053-8_33Zamora-Martínez, F., España-Boquera, S., & Castro-Bleda, M. J. (s. f.). Behaviour-Based Clustering of Neural Networks Applied to Document Enhancement. Lecture Notes in Computer Science, 144-151. doi:10.1007/978-3-540-73007-1_18Graves, A., Fernández, S., & Schmidhuber, J. (2007). Multi-dimensional Recurrent Neural Networks. Artificial Neural Networks – ICANN 2007, 549-558. doi:10.1007/978-3-540-74690-4_56Sauvola, J., & Pietikäinen, M. (2000). Adaptive document image binarization. Pattern Recognition, 33(2), 225-236. doi:10.1016/s0031-3203(99)00055-2Pastor-Pellicer, J., Castro-Bleda, M. J., & Adelantado-Torres, J. L. (2015). esCam: A Mobile Application to Capture and Enhance Text Images. Lecture Notes in Computer Science, 601-604. doi:10.1007/978-3-319-19222-2_5

    Interest of perceptive vision for document structure analysis

    No full text
    International audienceThis work addresses the problem of document image analysis, and more particularly the topic of document structure recognition in old, damaged and handwritten document. The goal of this paper is to present the interest of the human perceptive vision for document analysis. We focus on two aspects of the model of perceptive vision: the perceptive cycle and the visual attention. We present the key elements of the perceptive vision that can be used for document analysis. Thus, we introduce the perceptive vision in an existing method for document structure recognition, which enable both to show how we used the properties of the perceptive vision and to compare the results obtained with and without perceptive vision. We apply our method for the analysis of several kinds of documents (archive registers, old newspapers, incoming mails . . . ) and show that the perceptive vision signicantly improves their recognition. Moreover, the use of the perceptive vision simplies the description of complex documents. At last, the running time is often reduced

    Binarization Technique on Historical Documents using Edge Width Detection

    Get PDF
    Document images often suffer from different types of degradation that renders the document image binarization is a challenging task. Document image binarization is of great significance in the document image analysis and recognition process because it affects additional steps of the recognition development. The Comparison of image gradient and image contrast is estimated by the local maximum and minimum which has high quality. So, it is more tolerant to the rough lighting and other types of document degradation such as low contrast images and partially visible images. The distinction between the foreground text and the background text of different document images is a difficult task. This paper presents a new document image binarization technique that focus on these issues using adaptive image contrast. The grouping of the local image contrast and the local image slope is the adaptive image contrast so as to tolerate the text and surroundings distinction caused by dissimilar types of text degradations. In image binarization technique, the construction of adaptive contrast map is done for an input degraded document image which is then adaptively binarized and combined with Canny’s edge detector to recognize the text stroke edge pixels. The document text is advance segmented by means of a local threshold. We try to apply the self-training adaptive binarization approach on existing binarization methods, which improves not only the performance of existing binarization methods, but also the, toughness on different kinds of degraded document images. DOI: 10.17762/ijritcc2321-8169.15066

    An Image-Based Measure for Evaluation of Mathematical Expression Recognition

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38628-2_81Mathematical expression recognition is an active research field that is related to document image analysis and typesetting. In this study, we present a novel global performance evaluation measure for mathematical expression recognition based on image matching. Using an image representation for evaluation tries to overcome the representation ambiguity as human beings do. The results of a recent competition were used to perform several experiments in order to analyze the benefits and drawbacks of this measure.This work was partially supported by the Spanish MEC under the STraDA research project (TIN2012-37475-C02-01), the MITTRAL (TIN2009-14633-C03-01) project, the FPU grant (AP2009-4363), by the Generalitat Valenciana under the grant Prometeo/2009/014, and through the EU 7th Framework Programme grant tranScriptorium (Ref: 600707)Álvaro Muñoz, F.; Sánchez Peiró, JA.; Benedí Ruiz, JM. (2013). An Image-Based Measure for Evaluation of Mathematical Expression Recognition. En Pattern Recognition and Image Analysis. Springer. 682-690. https://doi.org/10.1007/978-3-642-38628-2_81S682690Álvaro, F., Sánchez, J.A., Benedí, J.M.: Unbiased evaluation of handwritten mathematical expression recognition. In: Proceedings of ICFHR, Italy, pp. 181–186 (2012)Chan, K.F., Yeung, D.Y.: Error detection, error correction and performance evaluation in on-line mathematical expression recognition. Pattern Recognition 34(8), 1671–1684 (2001)Chou, P.A.: Recognition of equations using a two-dimensional stochastic context-free grammar. In: Pearlman, W.A. (ed.) Visual Communications and Image Processing IV. SPIE Proceedings Series, vol. 1199, pp. 852–863 (1989)Garain, U., Chaudhuri, B.B.: A corpus for OCR research on mathematical expressions. Int. Journal on Document Analysis and Recognition 7, 241–259 (2005)Keysers, D., Deselaers, T., Gollan, C., Ney, H.: Deformation models for image recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 29(8), 1422–1435 (2007)Mouchére, H., Viard-Gaudin, C., Garain, U., Kim, D.H., Kim, J.H.: ICFHR 2012 – Competition on Recognition of On-line Mathematical Expressions (CROHME 2012). In: Proceedings of ICFHR, Italy, pp. 807–812 (2012)Otsu, N.: A Threshold Selection Method from Gray-level Histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)Sain, K., Dasgupta, A., Garain, U.: EMERS: a tree matching-based performance evaluation of mathematical expression recognition system. International Journal of Document Analysis and Recognition (2010)Toselli, A.H., Juan, A., Vidal, E.: Spontaneous Handwriting Recognition and Classification. In: Proceedings of ICPR, England, UK, pp. 433–436 (2004)Zanibbi, R., Blostein, D., Cordy, J.R.: Recognizing mathematical expressions using tree transformation. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(11), 1–13 (2002)Zanibbi, R., Pillay, A., Mouchere, H., Viard-Gaudin, C., Blostein, D.: Stroke-based performance metrics for handwritten mathematical expressions. In: Proceedings of ICDAR, pp. 334–338 (2011
    corecore