167 research outputs found

    Inverted index compression based on term and document identifier reassignment

    Get PDF
    Ankara : The Department of Computer Engineering and the Institute of Engineering and Science of Bilkent University, 2008.Thesis (Master's) -- Bilkent University, 2008.Includes bibliographical references leaves 43-46.Compression of inverted indexes received great attention in recent years. An inverted index consists of lists of document identifiers, also referred as posting lists, for each term. Compressing an inverted index reduces the size of the index, which also improves the query performance due to the reduction on disk access times. In recent studies, it is shown that reassigning document identifiers has great effect in compression of an inverted index. In this work, we propose a novel technique that reassigns both term and document identifiers of an inverted index by transforming the matrix representation of the index into a block-diagonal form, which improves the compression ratio dramatically. We adapted row-net hypergraph-partitioning model for the transformation into block-diagonal form, which improves the compression ratio by as much as 50%. To the best of our knowledge, this method performs more effectively than previous inverted index compression techniques.Baykan, İzzet ÇağrıM.S

    Index compression for information retrielval systems

    Get PDF
    [Abstract] Given the increasing amount of information that is available today, there is a clear need for Information Retrieval (IR) systems that can process this information in an efficient and effective way. Efficient processing means minimising the amount of time and space required to process data, whereas effective processing means identifying accurately which information is relevant to the user and which is not. Traditionally, efficiency and effectiveness are at opposite ends (what is beneficial to efficiency is usually harmful to effectiveness, and vice versa), so the challenge of IR systems is to find a compromise between efficient and effective data processing. This thesis investigates the efficiency of IR systems. It suggests several novel strategies that can render IR systems more efficient by reducing the index size of IR systems, referred to as index compression. The index is the data structure that stores the information handled in the retrieval process. Two different approaches are proposed for index compression, namely document reordering and static index pruning. Both of these approaches exploit document collection characteristics in order to reduce the size of indexes, either by reassigning the document identifiers in the collection in the index, or by selectively discarding information that is less relevant to the retrieval process by pruning the index. The index compression strategies proposed in this thesis can be grouped into two categories: (i) Strategies which extend state of the art in the field of efficiency methods in novel ways. (ii) Strategies which are derived from properties pertaining to the effectiveness of IR systems; these are novel strategies, because they are derived from effectiveness as opposed to efficiency principles, and also because they show that efficiency and effectiveness can be successfully combined for retrieval. The main contributions of this work are in indicating principled extensions of state of the art in index compression, and also in suggesting novel theoretically-driven index compression techniques which are derived from principles of IR effectiveness. All these techniques are evaluated extensively, in thorough experiments involving established datasets and baselines, which allow for a straight-forward comparison with state of the art. Moreover, the optimality of the proposed approaches is addressed from a theoretical perspective.[Resumen] Dada la creciente cantidad de información disponible hoy en día, existe una clara necesidad de sistemas de Recuperación de Información (RI) que sean capaces de procesar esa información de una manera efectiva y eficiente. En este contexto, eficiente significa cantidad de tiempo y espacio requeridos para procesar datos, mientras que efectivo significa identificar de una manera precisa qué información es relevante para el usuario y cual no lo es. Tradicionalmente, eficiencia y efectividad se encuentran en polos opuestos - lo que es beneficioso para la eficiencia, normalmente perjudica la efectividad y viceversa - así que un reto para los sistemas de RI es encontrar un compromiso adecuado entre el procesamiento efectivo y eficiente de los datos. Esta tesis investiga el problema de la eficiencia de los sistemas de RI. Sugiere diferentes estrategias novedosas que pueden permitir la reducción de los índices de los sistemas de RI, enmarcadas dentro da las técnicas conocidas como compresión de índices. El índice es la estructura de datos que almacena la información utilizada en el proceso de recuperación. Se presentan dos aproximaciones diferentes para la compresión de los índices, referidas como reordenación de documentos y pruneado estático del índice. Ambas aproximaciones explotan características de colecciones de documentos para reducir el tamaño final de los índices, mediante la reasignación de los identificadores de los documentos de la colección o bien descartando selectivamente la información que es "menos relevante" para el proceso de recuperación. Las estrategias de compresión propuestas en este tesis se pueden agrupar en dos categorías: (i) estrategias que extienden el estado del arte en la eficiencia de una manera novedosa y (ii) estrategias derivadas de propiedades relacionadas con los principios de la efectividad en los sistemas de RI; estas estrategias son novedosas porque son derivadas desde principios de la efectividad como contraposición a los de la eficiencia, e porque revelan como la eficiencia y la efectividad pueden ser combinadas de una manera efectiva para la recuperación de información. Las contribuciones de esta tesis abarcan la elaboración de técnicas del estado del arte en compresión de índices y también en la derivación de técnicas de compresión basadas en fundamentos teóricos derivados de los principios de la efectividad de los sistemas de RI. Todas estas técnicas han sido evaluadas extensamente con numerosos experimentos que involucran conjuntos de datos y técnicas de referencia bien establecidas en el campo, las cuales permiten una comparación directa con el estado del arte. Finalmente, la optimalidad de las aproximaciones presentadas es tratada desde una perspectiva teórica

    Bridging Dense and Sparse Maximum Inner Product Search

    Full text link
    Maximum inner product search (MIPS) over dense and sparse vectors have progressed independently in a bifurcated literature for decades; the latter is better known as top-kk retrieval in Information Retrieval. This duality exists because sparse and dense vectors serve different end goals. That is despite the fact that they are manifestations of the same mathematical problem. In this work, we ask if algorithms for dense vectors could be applied effectively to sparse vectors, particularly those that violate the assumptions underlying top-kk retrieval methods. We study IVF-based retrieval where vectors are partitioned into clusters and only a fraction of clusters are searched during retrieval. We conduct a comprehensive analysis of dimensionality reduction for sparse vectors, and examine standard and spherical KMeans for partitioning. Our experiments demonstrate that IVF serves as an efficient solution for sparse MIPS. As byproducts, we identify two research opportunities and demonstrate their potential. First, we cast the IVF paradigm as a dynamic pruning technique and turn that insight into a novel organization of the inverted index for approximate MIPS for general sparse vectors. Second, we offer a unified regime for MIPS over vectors that have dense and sparse subspaces, and show its robustness to query distributions

    Modeling Errors in Biometric Surveillance and De-duplication Systems

    Get PDF
    In biometrics-based surveillance and de-duplication applications, the system commonly determines if a given individual has been encountered before. In this dissertation, these applications are viewed as specific instances of a broader class of problems known as Anonymous Identification. Here, the system does not necessarily determine the identity of a person; rather, it merely establishes if the given input biometric data was encountered previously. This dissertation demonstrates that traditional biometric evaluation measures cannot adequately estimate the error rate of an anonymous identification system in general and a de-duplication system in particular. In this regard, the first contribution is the design of an error prediction model for an anonymous identification system. The model shows that the order in which individuals are encountered impacts the error rate of the system. The second contribution - in the context of an identification system in general - is an explanatory model that explains the relationship between the Receiver Operating Characteristic (ROC) curve and the Cumulative Match Characteristic (CMC) curve of a closed-set biometric system. The phenomenon of biometrics menagerie is used to explain the possibility of deducing multiple CMC curves from the same ROC curve. Consequently, it is shown that a good\u27\u27 verification system can be a poor\u27\u27 identification system and vice-versa.;Besides the aforementioned contributions, the dissertation also explores the use of gait as a biometric modality in surveillance systems operating in the thermal or shortwave infrared (SWIR) spectrum. In this regard, a new gait representation scheme known as Gait Curves is developed and evaluated on thermal and SWIR data. Finally, a clustering scheme is used to demonstrate that gait patterns can be clustered into multiple categories; further, specific physical traits related to gender and body area are observed to impact cluster generation.;In sum, the dissertation provides some new insights into modeling anonymous identification systems and gait patterns for biometrics-based surveillance systems

    Classification software technique assessment

    Get PDF
    A catalog of software options is presented for the use of local user communities to obtain software for analyzing remotely sensed multispectral imagery. The resources required to utilize a particular software program are described. Descriptions of how a particular program analyzes data and the performance of that program for an application and data set provided by the user are shown. An effort is made to establish a statistical performance base for various software programs with regard to different data sets and analysis applications, to determine the status of the state-of-the-art

    An Evaluation of the Use of Diversity to Improve the Accuracy of Predicted Ratings in Recommender Systems

    Get PDF
    The diversity; versus accuracy trade off, has become an important area of research within recommender systems as online retailers attempt to better serve their customers and gain a competitive advantage through an improved customer experience. This dissertation attempted to evaluate the use of diversity measures in predictive models as a means of improving predicted ratings. Research literature outlines a number of influencing factors such as personality, taste, mood and social networks in addition to approaches to the diversity challenge post recommendation. A number of models were applied included DecisionStump, Linear Regression, J48 Decision Tree and Naive Bayes. Various evaluation metrics such as precision, recall, ROC area, mean squared error and correlation coefficient were used to evaluate the model types. The results were below a benchmark selected during the literature review. The experiment did not demonstrate that diversity measures as inputs improve the accuracy of predicted ratings. However, the evaluation results for the model without diversity measures were low also and comparable to those with diversity indicating that further research in this area may be worthwhile. While the experiment conducted did not clearly demonstrate that the inclusion of diversity measures as inputs improve the accuracy of predicted ratings, approaches to data extraction, pre-processing, and model selection could inform further research. Areas of further research identified within this paper may also add value for those interested in this topic

    Type determination in an optimizing compiler for APL

    Get PDF
    This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target " for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or dupUcate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find
    corecore