563 research outputs found

    Cross-language Text Classification with Convolutional Neural Networks From Scratch

    Get PDF
    Cross language classification is an important task in multilingual learning, where documents in different languages often share the same set of categories. The main goal is to reduce the labeling cost of training classification model for each individual language. The novel approach by using Convolutional Neural Networks for multilingual language classification is proposed in this article. It learns representation of knowledge gained from languages. Moreover, current method works for new individual language, which was not used in training. The results of empirical study on large dataset of 21 languages demonstrate robustness and competitiveness of the presented approach

    Using Wikipedia with associative networks for document classification

    Get PDF
    We demonstrate a new technique for building associative networks based on Wikipedia, comparing them to WordNet-based associative networks that we used previously, nding the Wikipedia-based networks to perform better at document classification. Additionally, we compare the performance of associative networks to various other text classification techniques using the Reuters-21578 dataset, establishing that associative networks can achieve comparable results

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    CROSS-LANGUAGE TEXT CLASSIFICATION WITH CONVOLUTIONAL NEURAL NETWORKS FROM SCRATCH

    Get PDF
    Cross language classification is an important task in multilingual learning, where documents in different languages often share the same set of categories. The main goal is to reduce the labeling cost of training classification model for each individual language. The novel approach by using Convolutional Neural Networks for multilingual language classification is proposed in this article. It learns representation of knowledge gained from languages. Moreover, current method works for new individual language, which was not used in training. The results of empirical study on large dataset of 21 languages demonstrate robustness and competitiveness of the presented approach

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc

    Mining Meaning from Wikipedia

    Get PDF
    Wikipedia is a goldmine of information; not just for its many readers, but also for the growing community of researchers who recognize it as a resource of exceptional scale and utility. It represents a vast investment of manual effort and judgment: a huge, constantly evolving tapestry of concepts and relations that is being applied to a host of tasks. This article provides a comprehensive description of this work. It focuses on research that extracts and makes use of the concepts, relations, facts and descriptions found in Wikipedia, and organizes the work into four broad categories: applying Wikipedia to natural language processing; using it to facilitate information retrieval and information extraction; and as a resource for ontology building. The article addresses how Wikipedia is being used as is, how it is being improved and adapted, and how it is being combined with other structures to create entirely new resources. We identify the research groups and individuals involved, and how their work has developed in the last few years. We provide a comprehensive list of the open-source software they have produced.Comment: An extensive survey of re-using information in Wikipedia in natural language processing, information retrieval and extraction and ontology building. Accepted for publication in International Journal of Human-Computer Studie

    Enhancing text clustering by leveraging Wikipedia semantics

    Full text link
    Most traditional text clustering methods are based on “bag of words ” (BOW) representation based on frequency statistics in a set of documents. BOW, however, ignores the important information on the semantic relationships between key terms. To overcome this problem, several methods have been proposed to enrich text representation with external resource in the past, such as WordNet. However, many of these approaches suffer from some limitations: 1) WordNet has limited coverage and has a lack of effective word-sense disambiguation ability; 2) Most of the text representation enrichment strategies, which append or replace document terms with their hypernym and synonym, are overly simple. In this paper, to overcome these deficiencies, we first propose a way to build a concept thesaurus based on the semantic relations (synonym, hypernym, and associative relation) extracted from Wikipedia. Then, we develop a unified framework to leverage these semantic relations in order to enhance traditional content similarity measure for text clustering. The experimental results on Reuters and OHSUMED datasets show that with the help of Wikipedia thesaurus, the clustering performance of our method is improved as compared to previous methods. In addition, with the optimized weights for hypernym, synonym, and associative concepts that are tuned with the help of a few labeled data users provided, the clustering performance can be further improved

    Knowledge-rich Word Sense Disambiguation rivaling supervised systems

    Get PDF
    One of the main obstacles to high-performance Word Sense Disambiguation (WSD) is the knowledge acquisition bottleneck. In this paper, we present a methodology to automatically extend WordNet with large amounts of semantic relations from an encyclopedic resource, namely Wikipedia. We show that, when provided with a vast amount of high-quality semantic relations, simple knowledge-lean disambiguation algorithms compete with state-of-the-art supervised WSD systems in a coarse-grained all-words setting and outperform them on gold-standard domain-specific datasets. Š 2010 Association for Computational Linguistics

    Measuring associational thinking through word embeddings

    Full text link
    [EN] The development of a model to quantify semantic similarity and relatedness between words has been the major focus of many studies in various fields, e.g. psychology, linguistics, and natural language processing. Unlike the measures proposed by most previous research, this article is aimed at estimating automatically the strength of associative words that can be semantically related or not. We demonstrate that the performance of the model depends not only on the combination of independently constructed word embeddings (namely, corpus- and network-based embeddings) but also on the way these word vectors interact. The research concludes that the weighted average of the cosine-similarity coefficients derived from independent word embeddings in a double vector space tends to yield high correlations with human judgements. Moreover, we demonstrate that evaluating word associations through a measure that relies on not only the rank ordering of word pairs but also the strength of associations can reveal some findings that go unnoticed by traditional measures such as Spearman's and Pearson's correlation coefficients.s Financial support for this research has been provided by the Spanish Ministry of Science, Innovation and Universities [grant number RTC 2017-6389-5], the Spanish ¿Agencia Estatal de Investigación¿ [grant number PID2020-112827GB-I00 / AEI / 10.13039/501100011033], and the European Union¿s Horizon 2020 research and innovation program [grant number 101017861: project SMARTLAGOON]. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.Periùån-Pascual, C. (2022). Measuring associational thinking through word embeddings. Artificial Intelligence Review. 55(3):2065-2102. https://doi.org/10.1007/s10462-021-10056-62065210255
    • …
    corecore