2 research outputs found

    Docking rigid macrocycles using Convex-PL, AutoDock Vina, and RDKit in the D3R Grand Challenge 4

    Get PDF
    International audienceThe D3R Grand Challenge 4 provided a brilliant opportunity to test macrocyclic docking protocols on a diverse high-quality experimental data. We participated in both pose and affinity prediction exercises. Overall, we aimed to use an automated structure-based docking pipeline built around a set of tools developed in our team. This exercise again demonstrated a crucial importance of the correct local ligand geometry for the overall success of docking. Starting from the second part of the pose prediction stage, we developed a stable pipeline for sampling macrocycle conformers. This resulted in the subangstrom average precision of our pose predictions. In the affinity prediction exercise we obtained average results. However, we could improve these when using docking poses submitted by the best predictors. Our docking tools including the Convex-PL scoring function are available at https://team.inria.fr/nano-d/software/

    Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery

    Get PDF
    Molecular similarity is a key concept in drug discovery. It is based on the assumption that structurally similar molecules frequently have similar properties. Assessment of similarity between small molecules has been highly effective in the discovery and development of various drugs. Especially, two-dimensional (2D) similarity approaches have been quite popular due to their simplicity, accuracy and efficiency. Recently, the focus has been shifted toward the development of methods involving the representation and comparison of three-dimensional (3D) conformation of small molecules. Among the 3D similarity methods, evaluation of shape similarity is now gaining attention for its application not only in virtual screening but also in molecular target prediction, drug repurposing and scaffold hopping. A wide range of methods have been developed to describe molecular shape and to determine the shape similarity between small molecules. The most widely used methods include atom distance-based methods, surface-based approaches such as spherical harmonics and 3D Zernike descriptors, atom-centered Gaussian overlay based representations. Several of these methods demonstrated excellent virtual screening performance not only retrospectively but also prospectively. In addition to methods assessing the similarity between small molecules, shape similarity approaches have been developed to compare shapes of protein structures and binding pockets. Additionally, shape comparisons between atomic models and 3D density maps allowed the fitting of atomic models into cryo-electron microscopy maps. This review aims to summarize the methodological advances in shape similarity assessment highlighting advantages, disadvantages and their application in drug discovery
    corecore