12 research outputs found

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    Automatic quality assessment in mammography screening:a deep learning based segmentation method

    Get PDF
    Abstract. Mammography is an imaging method used as a main tool to detect breast cancer at early stages. Images (mammograms) are examined by radiologists, who aim to identify cancerous findings. However, in order to do that, the mammograms need to be of diagnostic quality, which can sometimes be insufficient, and thus the quality of diagnosis also suffers. Radiology technicians (radiographers) are trained to take mammography images, but not in every healthcare center a strict quality control process is established, which may substantially affect the patients. The most common defects in mammograms are positioning defects, which are seen in the images as skin-foldings or non-imaged parts of the breast. The major issue at a process level is that the described positioning issues are noticed late, already at the diagnostic phase. If a radiologist decides that the mammogram is a non-diagnostic quality, the patient needs to revisit the imaging center. If quality control could be automated and standardized, unnecessary patient recalls could be avoided, thus, reducing the costs of the mammographic process. To date, there is a lack of automatic general quality control tools for mammography screening. Looking at the recent advances in artificial intelligence, it may be possible to automate this process. The goal of this thesis was to develop an automatic system for quality assessment of mammograms. The author used Deep learning to develop an automatic framework for automatic segmentation of defects in mammograms using a dataset of 512 mammographic images extracted from the Oulu University Hospital archive. The second stage of the developed method performed quality assessment by analyzing the presence and location of different tissues in the images from the predicted segmentations. The developed segmentation model yielded a Dice coefficient over 0.90 for the whole breast, breast, and pectoral muscle, and over 0.60 for skin-foldings and nipple. The developed method is the first to tackle automatic segmentation of all major positioning issues in mammography. Ultimately, the developed technology has a potential to improve the mammography workflows and, eventually, patient outcomes.Automaattinen laadunarviointi mammografian kuvauksessa : syväoppimispohjainen segmentointimenetelmä. Tiivistelmä. Mammografiaa on kuvantamismenetelmä, jota käytetään päävälineenä rintasyövän havaitsemiseksi varhaisessa vaiheessa. Radiologien on tutkittava mammogrammit ja päätettävä sitten, onko pahanlaatusia löydöksiä, ja tätä varten mammografiakuvien on oltava diagnostisesti laadukkaita. Ammattilaiset koulutetaan mammografiakuvien ottamiseksi, mutta ei kaikissa terveyskeskuksissa on otettu käyttöön tiukka laadunvalvontaprosessi, joka voi vaikuttaa merkittävästi potilaisiin. Kuvissa voi olla virheitä, jotka tekevät kuvista ei-diagnostisen laadukkaan mammogrammin, ja ne voivat vaikuttaa diagnostiikkatuloksiin. Yksi näistä vioista ovat paikannusvirheet, joissa näkyvät kuvissa ihon taitoksina ja jotkut rinnan osat eivät näy. Suurin ongelma prosessitasolla on, että kuvatut paikannusvirheet havaitaan myöhässä, jo diagnoosivaiheessa. Jos radiologit päättävät, että mammografiakuva ei ole diagnostisesti laadukas, potilaan on palattava kuvantamiskeskukseen ja tutkittava uudelleen, mikä voi lisätä kustannuksia ja työmäärää. Jos laadunvalvonta voidaan automatisoida ja standardoida, voidaan välttää tarpeetonta potilaan palauttamista ja vähentää siten mammografiaprosessin kustannuksia. Tähän mennessä mammografiaseulonnassa ei ole automaattista yleistä laadunvalvontaa. Kun tarkastellaan tekoälyn viimeaikaisia edistystä, tämän prosessin automatisointi voi olla mahdollista. Tämän projektin tarkoituksena oli todistaa diagnostisten ja ei-diagnostisten laatumammogrammien automaattisen erottamisen toteutettavuus. Kirjoittaja käytti syvää oppimista automatisoidun kehyksen luomisessa käyttämällä 512 mammografiakuvaa, jotka otettiin Oulun yliopistollisen sairaalan arkistosta. Automaattisen menetelmän ensimmäisessä vaiheessa suoritettiin rintakudosten ja ihon taittumien segmentointi. Toisessa vaiheessa suoritettiin laadunarviointi analysoimalla eri kudosten läsnäolo ja sijainti kuvissa. Kehitetyllä segmentointimallilla saavutettiin merkittäviä tuloksia, kun koko rinnan ja rintalihasten segmentoinnin onnistumisen hyvyttä mittaava Dice-kerroin oli yli 0,90, ja ihon taittumiselle ja nännille yli 0,60. Kehitetty menetelmä on ensimmäinen, joka käsittelee mammografian kaikkien tärkeimpien paikannusvirheiden automaattista segmentointia. Sillä on potentiaalia myötävaikuttaa mammografian työnkulkujen ja potilastulosten parantamiseen

    DEVELOPING MEDICAL IMAGE SEGMENTATION AND COMPUTER-AIDED DIAGNOSIS SYSTEMS USING DEEP NEURAL NETWORKS

    Get PDF
    Diagnostic medical imaging is an important non-invasive tool in medicine. It provides doctors (i.e., radiologists) with rich diagnostic information in clinical practice. Computer-aided diagnosis (CAD) schemes aim to provide a tool to assist the doctors for reading and interpreting medical images. Traditional CAD schemes are based on hand-crafted features and shallow supervised learning algorithms. They are greatly limited by the difficulties of accurate region segmentation and effective feature extraction. In this dissertation, our motivation is to apply deep learning techniques to address these challenges. We comprehensively investigated the feasibilities of applying deep learning technique to develop medical image segmentation and computer-aided diagnosis schemes for different imaging modalities and different tasks. First, we applied a two-step convolutional neural network architecture for selection of abdomen part and segmentation of subtypes of adipose tissue from abdominal CT images. We demonstrated high agreement between the segmentation generated by human and by our proposed deep learning models. Second, we explored to combine transfer learning technique with traditional hand-crafted features to improve the accuracy of breast mass classification from digital mammograms. Our results show that the ensemble of hand-crafted features and transferred features yields improvement of prediction performances. Third, we proposed a 3D fully convolutional network architecture with a novel coarse-to-fine residual module for prostate segmentation from MRI. State-of-art segmentation accuracy was obtained by using this model. We also investigated the feasibilities of applying fully convolutional network for prostate cancer detection based on multi-parametric MRI and obtained promising detection accuracy. Last, we proposed a novel cascaded neural network architecture with post-processing steps for nuclear segmentation from histology images. Superiority of the model was demonstrated by experiments. In summary, these study results demonstrated that deep learning is a very promising technology to help significantly improve efficacy of developing computer-aided diagnosis schemes of medical images and achieve higher performance

    Image Augmentation Techniques for Mammogram Analysis

    Get PDF
    Research in the medical imaging field using deep learning approaches has become progressively contingent. Scientific findings reveal that supervised deep learning methods’ performance heavily depends on training set size, which expert radiologists must manually annotate. The latter is quite a tiring and time-consuming task. Therefore, most of the freely accessible biomedical image datasets are small-sized. Furthermore, it is challenging to have big-sized medical image datasets due to privacy and legal issues. Consequently, not a small number of supervised deep learning models are prone to overfitting and cannot produce generalized output. One of the most popular methods to mitigate the issue above goes under the name of data augmentation. This technique helps increase training set size by utilizing various transformations and has been publicized to improve the model performance when tested on new data. This article surveyed different data augmentation techniques employed on mammogram images. The study aims to provide insights into augmentation and deep learning-based augmentation techniques

    A Bottom-Up Review of Image Analysis Methods for Suspicious Region Detection in Mammograms.

    Get PDF
    Breast cancer is one of the most common death causes amongst women all over the world. Early detection of breast cancer plays a critical role in increasing the survival rate. Various imaging modalities, such as mammography, breast MRI, ultrasound and thermography, are used to detect breast cancer. Though there is a considerable success with mammography in biomedical imaging, detecting suspicious areas remains a challenge because, due to the manual examination and variations in shape, size, other mass morphological features, mammography accuracy changes with the density of the breast. Furthermore, going through the analysis of many mammograms per day can be a tedious task for radiologists and practitioners. One of the main objectives of biomedical imaging is to provide radiologists and practitioners with tools to help them identify all suspicious regions in a given image. Computer-aided mass detection in mammograms can serve as a second opinion tool to help radiologists avoid running into oversight errors. The scientific community has made much progress in this topic, and several approaches have been proposed along the way. Following a bottom-up narrative, this paper surveys different scientific methodologies and techniques to detect suspicious regions in mammograms spanning from methods based on low-level image features to the most recent novelties in AI-based approaches. Both theoretical and practical grounds are provided across the paper sections to highlight the pros and cons of different methodologies. The paper's main scope is to let readers embark on a journey through a fully comprehensive description of techniques, strategies and datasets on the topic

    Computer-aided detection and diagnosis of breast cancer in 2D and 3D medical imaging through multifractal analysis

    Get PDF
    This Thesis describes the research work performed in the scope of a doctoral research program and presents its conclusions and contributions. The research activities were carried on in the industry with Siemens S.A. Healthcare Sector, in integration with a research team. Siemens S.A. Healthcare Sector is one of the world biggest suppliers of products, services and complete solutions in the medical sector. The company offers a wide selection of diagnostic and therapeutic equipment and information systems. Siemens products for medical imaging and in vivo diagnostics include: ultrasound, computer tomography, mammography, digital breast tomosynthesis, magnetic resonance, equipment to angiography and coronary angiography, nuclear imaging, and many others. Siemens has a vast experience in Healthcare and at the beginning of this project it was strategically interested in solutions to improve the detection of Breast Cancer, to increase its competitiveness in the sector. The company owns several patents related with self-similarity analysis, which formed the background of this Thesis. Furthermore, Siemens intended to explore commercially the computer- aided automatic detection and diagnosis eld for portfolio integration. Therefore, with the high knowledge acquired by University of Beira Interior in this area together with this Thesis, will allow Siemens to apply the most recent scienti c progress in the detection of the breast cancer, and it is foreseeable that together we can develop a new technology with high potential. The project resulted in the submission of two invention disclosures for evaluation in Siemens A.G., two articles published in peer-reviewed journals indexed in ISI Science Citation Index, two other articles submitted in peer-reviewed journals, and several international conference papers. This work on computer-aided-diagnosis in breast led to innovative software and novel processes of research and development, for which the project received the Siemens Innovation Award in 2012. It was very rewarding to carry on such technological and innovative project in a socially sensitive area as Breast Cancer.No cancro da mama a deteção precoce e o diagnóstico correto são de extrema importância na prescrição terapêutica e caz e e ciente, que potencie o aumento da taxa de sobrevivência à doença. A teoria multifractal foi inicialmente introduzida no contexto da análise de sinal e a sua utilidade foi demonstrada na descrição de comportamentos siológicos de bio-sinais e até na deteção e predição de patologias. Nesta Tese, três métodos multifractais foram estendidos para imagens bi-dimensionais (2D) e comparados na deteção de microcalci cações em mamogramas. Um destes métodos foi também adaptado para a classi cação de massas da mama, em cortes transversais 2D obtidos por ressonância magnética (RM) de mama, em grupos de massas provavelmente benignas e com suspeição de malignidade. Um novo método de análise multifractal usando a lacunaridade tri-dimensional (3D) foi proposto para classi cação de massas da mama em imagens volumétricas 3D de RM de mama. A análise multifractal revelou diferenças na complexidade subjacente às localizações das microcalci cações em relação aos tecidos normais, permitindo uma boa exatidão da sua deteção em mamogramas. Adicionalmente, foram extraídas por análise multifractal características dos tecidos que permitiram identi car os casos tipicamente recomendados para biópsia em imagens 2D de RM de mama. A análise multifractal 3D foi e caz na classi cação de lesões mamárias benignas e malignas em imagens 3D de RM de mama. Este método foi mais exato para esta classi cação do que o método 2D ou o método padrão de análise de contraste cinético tumoral. Em conclusão, a análise multifractal fornece informação útil para deteção auxiliada por computador em mamogra a e diagnóstico auxiliado por computador em imagens 2D e 3D de RM de mama, tendo o potencial de complementar a interpretação dos radiologistas

    Pixel N-grams for Mammographic Image Classification

    Get PDF
    X-ray screening for breast cancer is an important public health initiative in the management of a leading cause of death for women. However, screening is expensive if mammograms are required to be manually assessed by radiologists. Moreover, manual screening is subject to perception and interpretation errors. Computer aided detection/diagnosis (CAD) systems can help radiologists as computer algorithms are good at performing image analysis consistently and repetitively. However, image features that enhance CAD classification accuracies are necessary for CAD systems to be deployed. Many CAD systems have been developed but the specificity and sensitivity is not high; in part because of challenges inherent in identifying effective features to be initially extracted from raw images. Existing feature extraction techniques can be grouped under three main approaches; statistical, spectral and structural. Statistical and spectral techniques provide global image features but often fail to distinguish between local pattern variations within an image. On the other hand, structural approach have given rise to the Bag-of-Visual-Words (BoVW) model, which captures local variations in an image, but typically do not consider spatial relationships between the visual “words”. Moreover, statistical features and features based on BoVW models are computationally very expensive. Similarly, structural feature computation methods other than BoVW are also computationally expensive and strongly dependent upon algorithms that can segment an image to localize a region of interest likely to contain the tumour. Thus, classification algorithms using structural features require high resource computers. In order for a radiologist to classify the lesions on low resource computers such as Ipads, Tablets, and Mobile phones, in a remote location, it is necessary to develop computationally inexpensive classification algorithms. Therefore, the overarching aim of this research is to discover a feature extraction/image representation model which can be used to classify mammographic lesions with high accuracy, sensitivity and specificity along with low computational cost. For this purpose a novel feature extraction technique called ‘Pixel N-grams’ is proposed. The Pixel N-grams approach is inspired from the character N-gram concept in text categorization. Here, N number of consecutive pixel intensities are considered in a particular direction. The image is then represented with the help of histogram of occurrences of the Pixel N-grams in an image. Shape and texture of mammographic lesions play an important role in determining the malignancy of the lesion. It was hypothesized that the Pixel N-grams would be able to distinguish between various textures and shapes. Experiments carried out on benchmark texture databases and binary basic shapes database have demonstrated that the hypothesis was correct. Moreover, the Pixel N-grams were able to distinguish between various shapes irrespective of size and location of shape in an image. The efficacy of the Pixel N-gram technique was tested on mammographic database of primary digital mammograms sourced from a radiological facility in Australia (LakeImaging Pty Ltd) and secondary digital mammograms (benchmark miniMIAS database). A senior radiologist from LakeImaging provided real time de-identified high resolution mammogram images with annotated regions of interests (which were used as groundtruth), and valuable radiological diagnostic knowledge. Two types of classifications were observed on these two datasets. Normal/abnormal classification useful for automated screening and circumscribed/speculation/normal classification useful for automated diagnosis of breast cancer. The classification results on both the mammography datasets using Pixel N-grams were promising. Classification performance (Fscore, sensitivity and specificity) using Pixel N-gram technique was observed to be significantly better than the existing techniques such as intensity histogram, co-occurrence matrix based features and comparable with the BoVW features. Further, Pixel N-gram features are found to be computationally less complex than the co-occurrence matrix based features as well as BoVW features paving the way for mammogram classification on low resource computers. Although, the Pixel N-gram technique was designed for mammographic classification, it could be applied to other image classification applications such as diabetic retinopathy, histopathological image classification, lung tumour detection using CT images, brain tumour detection using MRI images, wound image classification and tooth decay classification using dentistry x-ray images. Further, texture and shape classification is also useful for classification of real world images outside the medical domain. Therefore, the pixel N-gram technique could be extended for applications such as classification of satellite imagery and other object detection tasks.Doctor of Philosoph

    Mammography

    Get PDF
    In this volume, the topics are constructed from a variety of contents: the bases of mammography systems, optimization of screening mammography with reference to evidence-based research, new technologies of image acquisition and its surrounding systems, and case reports with reference to up-to-date multimodality images of breast cancer. Mammography has been lagged in the transition to digital imaging systems because of the necessity of high resolution for diagnosis. However, in the past ten years, technical improvement has resolved the difficulties and boosted new diagnostic systems. We hope that the reader will learn the essentials of mammography and will be forward-looking for the new technologies. We want to express our sincere gratitude and appreciation?to all the co-authors who have contributed their work to this volume
    corecore