134 research outputs found

    Partial Differential Equation-Constrained Diffeomorphic Registration from Sum of Squared Differences to Normalized Cross-Correlation, Normalized Gradient Fields, and Mutual Information: A Unifying Framework; 35632143

    Get PDF
    This work proposes a unifying framework for extending PDE-constrained Large Deformation Diffeomorphic Metric Mapping (PDE-LDDMM) with the sum of squared differences (SSD) to PDE-LDDMM with different image similarity metrics. We focused on the two best-performing variants of PDE-LDDMM with the spatial and band-limited parameterizations of diffeomorphisms. We derived the equations for gradient-descent and Gauss-Newton-Krylov (GNK) optimization with Normalized Cross-Correlation (NCC), its local version (lNCC), Normalized Gradient Fields (NGFs), and Mutual Information (MI). PDE-LDDMM with GNK was successfully implemented for NCC and lNCC, substantially improving the registration results of SSD. For these metrics, GNK optimization outperformed gradient-descent. However, for NGFs, GNK optimization was not able to overpass the performance of gradient-descent. For MI, GNK optimization involved the product of huge dense matrices, requesting an unaffordable memory load. The extensive evaluation reported the band-limited version of PDE-LDDMM based on the deformation state equation with NCC and lNCC image similarities among the best performing PDE-LDDMM methods. In comparison with benchmark deep learning-based methods, our proposal reached or surpassed the accuracy of the best-performing models. In NIREP16, several configurations of PDE-LDDMM outperformed ANTS-lNCC, the best benchmark method. Although NGFs and MI usually underperformed the other metrics in our evaluation, these metrics showed potentially competitive results in a multimodal deformable experiment. We believe that our proposed image similarity extension over PDE-LDDMM will promote the use of physically meaningful diffeomorphisms in a wide variety of clinical applications depending on deformable image registration

    Methods for Photoacoustic Image Reconstruction Exploiting Properties of Curvelet Frame

    Get PDF
    Curvelet frame is of special significance for photoacoustic tomography (PAT) due to its sparsifying and microlocalisation properties. In this PhD project, we explore the methods for image reconstruction in PAT with flat sensor geometry using Curvelet properties. This thesis makes five distinct contributions: (i) We investigate formulation of the forward, adjoint and inverse operators for PAT in Fourier domain. We derive a one-to-one map between wavefront directions in image and data spaces in PAT. Combining the Fourier operators with the wavefront map allows us to create the appropriate PAT operators for solving limited-view problems due to limited angular sensor sensitivity. (ii) We devise a concept of wedge restricted Curvelet transform, a modification of standard Curvelet transform, which allows us to formulate a tight frame of wedge restricted Curvelets on the range of the PAT forward operator for PAT data representation. We consider details specific to PAT data such as symmetries, time oversampling and their consequences. We further adapt the wedge restricted Curvelet to decompose the wavefronts into visible and invisible parts in the data domain as well as in the image domain. (iii) We formulate a two step approach based on the recovery of the complete volume of the photoacoustic data from the sub-sampled data followed by the acoustic inversion, and a one step approach where the photoacoustic image is directly recovered from the subsampled data. The wedge restricted Curvelet is used as the sparse representation of the photoacoustic data in the two step approach. (iv) We discuss a joint variational approach that incorporates Curvelet sparsity in photoacoustic image domain and spatio-temporal regularization via optical flow constraint to achieve improved results for dynamic PAT reconstruction. (v) We consider the limited-view problem due to limited angular sensitivity of the sensor (see (i) for the formulation of the corresponding fast operators in Fourier domain). We propose complementary information learning approach based on splitting the problem into visible and invisible singularities. We perform a sparse reconstruction of the visible Curvelet coefficients using compressed sensing techniques and propose a tailored deep neural network architecture to recover the invisible coefficients

    Tensor Approximation for Multidimensional and Multivariate Data

    Full text link
    Tensor decomposition methods and multilinear algebra are powerful tools to cope with challenges around multidimensional and multivariate data in computer graphics, image processing and data visualization, in particular with respect to compact representation and processing of increasingly large-scale data sets. Initially proposed as an extension of the concept of matrix rank for 3 and more dimensions, tensor decomposition methods have found applications in a remarkably wide range of disciplines. We briefly review the main concepts of tensor decompositions and their application to multidimensional visual data. Furthermore, we will include a first outlook on porting these techniques to multivariate data such as vector and tensor fields

    Localization of adaptive variants in human genomes using averaged one-dependence estimation.

    Get PDF
    Statistical methods for identifying adaptive mutations from population genetic data face several obstacles: assessing the significance of genomic outliers, integrating correlated measures of selection into one analytic framework, and distinguishing adaptive variants from hitchhiking neutral variants. Here, we introduce SWIF(r), a probabilistic method that detects selective sweeps by learning the distributions of multiple selection statistics under different evolutionary scenarios and calculating the posterior probability of a sweep at each genomic site. SWIF(r) is trained using simulations from a user-specified demographic model and explicitly models the joint distributions of selection statistics, thereby increasing its power to both identify regions undergoing sweeps and localize adaptive mutations. Using array and exome data from 45 ‡Khomani San hunter-gatherers of southern Africa, we identify an enrichment of adaptive signals in genes associated with metabolism and obesity. SWIF(r) provides a transparent probabilistic framework for localizing beneficial mutations that is extensible to a variety of evolutionary scenarios

    Inferential stability in systems biology

    Get PDF
    The modern biological sciences are fraught with statistical difficulties. Biomolecular stochasticity, experimental noise, and the “large p, small n” problem all contribute to the challenge of data analysis. Nevertheless, we routinely seek to draw robust, meaningful conclusions from observations. In this thesis, we explore methods for assessing the effects of data variability upon downstream inference, in an attempt to quantify and promote the stability of the inferences we make. We start with a review of existing methods for addressing this problem, focusing upon the bootstrap and similar methods. The key requirement for all such approaches is a statistical model that approximates the data generating process. We move on to consider biomarker discovery problems. We present a novel algorithm for proposing putative biomarkers on the strength of both their predictive ability and the stability with which they are selected. In a simulation study, we find our approach to perform favourably in comparison to strategies that select on the basis of predictive performance alone. We then consider the real problem of identifying protein peak biomarkers for HAM/TSP, an inflammatory condition of the central nervous system caused by HTLV-1 infection. We apply our algorithm to a set of SELDI mass spectral data, and identify a number of putative biomarkers. Additional experimental work, together with known results from the literature, provides corroborating evidence for the validity of these putative biomarkers. Having focused on static observations, we then make the natural progression to time course data sets. We propose a (Bayesian) bootstrap approach for such data, and then apply our method in the context of gene network inference and the estimation of parameters in ordinary differential equation models. We find that the inferred gene networks are relatively unstable, and demonstrate the importance of finding distributions of ODE parameter estimates, rather than single point estimates

    Exploiting random projections and sparsity with random forests and gradient boosting methods - Application to multi-label and multi-output learning, random forest model compression and leveraging input sparsity

    Full text link
    Within machine learning, the supervised learning field aims at modeling the input-output relationship of a system, from past observations of its behavior. Decision trees characterize the input-output relationship through a series of nested ``if-then-else'' questions, the testing nodes, leading to a set of predictions, the leaf nodes. Several of such trees are often combined together for state-of-the-art performance: random forest ensembles average the predictions of randomized decision trees trained independently in parallel, while tree boosting ensembles train decision trees sequentially to refine the predictions made by the previous ones. The emergence of new applications requires scalable supervised learning algorithms in terms of computational power and memory space with respect to the number of inputs, outputs, and observations without sacrificing accuracy. In this thesis, we identify three main areas where decision tree methods could be improved for which we provide and evaluate original algorithmic solutions: (i) learning over high dimensional output spaces, (ii) learning with large sample datasets and stringent memory constraints at prediction time and (iii) learning over high dimensional sparse input spaces. A first approach to solve learning tasks with a high dimensional output space, called binary relevance or single target, is to train one decision tree ensemble per output. However, it completely neglects the potential correlations existing between the outputs. An alternative approach called multi-output decision trees fits a single decision tree ensemble targeting simultaneously all the outputs, assuming that all outputs are correlated. Nevertheless, both approaches have (i) exactly the same computational complexity and (ii) target extreme output correlation structures. In our first contribution, we show how to combine random projection of the output space, a dimensionality reduction method, with the random forest algorithm decreasing the learning time complexity. The accuracy is preserved, and may even be improved by reaching a different bias-variance tradeoff. In our second contribution, we first formally adapt the gradient boosting ensemble method to multi-output supervised learning tasks such as multi-output regression and multi-label classification. We then propose to combine single random projections of the output space with gradient boosting on such tasks to adapt automatically to the output correlation structure. The random forest algorithm often generates large ensembles of complex models thanks to the availability of a large number of observations. However, the space complexity of such models, proportional to their total number of nodes, is often prohibitive, and therefore these modes are not well suited under stringent memory constraints at prediction time. In our third contribution, we propose to compress these ensembles by solving a L1-based regularization problem over the set of indicator functions defined by all their nodes. Some supervised learning tasks have a high dimensional but sparse input space, where each observation has only a few of the input variables that have non zero values. Standard decision tree implementations are not well adapted to treat sparse input spaces, unlike other supervised learning techniques such as support vector machines or linear models. In our fourth contribution, we show how to exploit algorithmically the input space sparsity within decision tree methods. Our implementation yields a significant speed up both on synthetic and real datasets, while leading to exactly the same model. It also reduces the required memory to grow such models by exploiting sparse instead of dense memory storage for the input matrix.Parmi les techniques d'apprentissage automatique, l'apprentissage supervisé vise à modéliser les relations entrée-sortie d'un système, à partir d'observations de son fonctionnement. Les arbres de décision caractérisent cette relation entrée-sortie à partir d'un ensemble hiérarchique de questions appelées les noeuds tests amenant à une prédiction, les noeuds feuilles. Plusieurs de ces arbres sont souvent combinés ensemble afin d'atteindre les performances de l'état de l'art: les ensembles de forêts aléatoires calculent la moyenne des prédictions d'arbres de décision randomisés, entraînés indépendamment et en parallèle alors que les ensembles d'arbres de boosting entraînent des arbres de décision séquentiellement, améliorant ainsi les prédictions faites par les précédents modèles de l'ensemble. L'apparition de nouvelles applications requiert des algorithmes d'apprentissage supervisé efficaces en terme de puissance de calcul et d'espace mémoire par rapport au nombre d'entrées, de sorties, et d'observations sans sacrifier la précision du modèle. Dans cette thèse, nous avons identifié trois domaines principaux où les méthodes d'arbres de décision peuvent être améliorées pour lequel nous fournissons et évaluons des solutions algorithmiques originales: (i) apprentissage sur des espaces de sortie de haute dimension, (ii) apprentissage avec de grands ensembles d'échantillons et des contraintes mémoires strictes au moment de la prédiction et (iii) apprentissage sur des espaces d'entrée creux de haute dimension. Une première approche pour résoudre des tâches d'apprentissage avec un espace de sortie de haute dimension, appelée "binary relevance" ou "single target", est l’apprentissage d’un ensemble d'arbres de décision par sortie. Toutefois, cette approche néglige complètement les corrélations potentiellement existantes entre les sorties. Une approche alternative, appelée "arbre de décision multi-sorties", est l’apprentissage d’un seul ensemble d'arbres de décision pour toutes les sorties, faisant l'hypothèse que toutes les sorties sont corrélées. Cependant, les deux approches ont (i) exactement la même complexité en temps de calcul et (ii) visent des structures de corrélation de sorties extrêmes. Dans notre première contribution, nous montrons comment combiner des projections aléatoires (une méthode de réduction de dimensionnalité) de l'espace de sortie avec l'algorithme des forêts aléatoires diminuant la complexité en temps de calcul de la phase d'apprentissage. La précision est préservée, et peut même être améliorée en atteignant un compromis biais-variance différent. Dans notre seconde contribution, nous adaptons d'abord formellement la méthode d'ensemble "gradient boosting" à la régression multi-sorties et à la classification multi-labels. Nous proposons ensuite de combiner une seule projection aléatoire de l'espace de sortie avec l’algorithme de "gradient boosting" sur de telles tâches afin de s'adapter automatiquement à la structure des corrélations existant entre les sorties. Les algorithmes de forêts aléatoires génèrent souvent de grands ensembles de modèles complexes grâce à la disponibilité d'un grand nombre d'observations. Toutefois, la complexité mémoire, proportionnelle au nombre total de noeuds, de tels modèles est souvent prohibitive, et donc ces modèles ne sont pas adaptés à des contraintes mémoires fortes lors de la phase de prédiction. Dans notre troisième contribution, nous proposons de compresser ces ensembles en résolvant un problème de régularisation basé sur la norme L1 sur l'ensemble des fonctions indicatrices défini par tous leurs noeuds. Certaines tâches d'apprentissage supervisé ont un espace d'entrée de haute dimension mais creux, où chaque observation possède seulement quelques variables d'entrée avec une valeur non-nulle. Les implémentations standards des arbres de décision ne sont pas adaptées pour traiter des espaces d'entrée creux, contrairement à d'autres techniques d'apprentissage supervisé telles que les machines à vecteurs de support ou les modèles linéaires. Dans notre quatrième contribution, nous montrons comment exploiter algorithmiquement le creux de l'espace d'entrée avec les méthodes d'arbres de décision. Notre implémentation diminue significativement le temps de calcul sur des ensembles de données synthétiques et réelles, tout en fournissant exactement le même modèle. Cela permet aussi de réduire la mémoire nécessaire pour apprendre de tels modèles en exploitant des méthodes de stockage appropriées pour la matrice des entrées

    Data Assimilation Fundamentals

    Get PDF
    This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the "top-down" derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today's popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve. The book's top-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method for a particular problem or application. Have you ever wondered about the difference between the ensemble 4DVar and the "ensemble randomized likelihood" (EnRML) methods? Do you know the differences between the ensemble smoother and the ensemble-Kalman smoother? Would you like to understand how a particle flow is related to a particle filter? In this book, we will provide clear answers to several such questions. The book provides the basis for an advanced course in data assimilation. It focuses on the unified derivation of the methods and illustrates their properties on multiple examples. It is suitable for graduate students, post-docs, scientists, and practitioners working in data assimilation
    • …
    corecore