139 research outputs found

    Deep Adversarial Attention Alignment for Unsupervised Domain Adaptation: The Benefit of Target Expectation Maximization

    Full text link
    © 2018, Springer Nature Switzerland AG. In this paper, we make two contributions to unsupervised domain adaptation (UDA) using the convolutional neural network (CNN). First, our approach transfers knowledge in all the convolutional layers through attention alignment. Most previous methods align high-level representations, e.g., activations of the fully connected (FC) layers. In these methods, however, the convolutional layers which underpin critical low-level domain knowledge cannot be updated directly towards reducing domain discrepancy. Specifically, we assume that the discriminative regions in an image are relatively invariant to image style changes. Based on this assumption, we propose an attention alignment scheme on all the target convolutional layers to uncover the knowledge shared by the source domain. Second, we estimate the posterior label distribution of the unlabeled data for target network training. Previous methods, which iteratively update the pseudo labels by the target network and refine the target network by the updated pseudo labels, are vulnerable to label estimation errors. Instead, our approach uses category distribution to calculate the cross-entropy loss for training, thereby ameliorating the error accumulation of the estimated labels. The two contributions allow our approach to outperform the state-of-the-art methods by +2.6% on the Office-31 dataset

    Incorporating structure into neural models for language processing

    Get PDF

    Logging Trail Segmentation via a Novel U-Net Convolutional Neural Network and High-Density Laser Scanning Data

    Get PDF
    Logging trails are one of the main components of modern forestry. However, spotting the accurate locations of old logging trails through common approaches is challenging and time consuming. This study was established to develop an approach, using cutting-edge deep-learning convolutional neural networks and high-density laser scanning data, to detect logging trails in different stages of commercial thinning, in Southern Finland. We constructed a U-Net architecture, consisting of encoder and decoder paths with several convolutional layers, pooling and non-linear operations. The canopy height model (CHM), digital surface model (DSM), and digital elevation models (DEMs) were derived from the laser scanning data and were used as image datasets for training the model. The labeled dataset for the logging trails was generated from different references as well. Three forest areas were selected to test the efficiency of the algorithm that was developed for detecting logging trails. We designed 21 routes, including 390 samples of the logging trails and non-logging trails, covering all logging trails inside the stands. The results indicated that the trained U-Net using DSM (k = 0.846 and IoU = 0.867) shows superior performance over the trained model using CHM (k = 0.734 and IoU = 0.782), DEMavg (k = 0.542 and IoU = 0.667), and DEMmin (k = 0.136 and IoU = 0.155) in distinguishing logging trails from non-logging trails. Although the efficiency of the developed approach in young and mature stands that had undergone the commercial thinning is approximately perfect, it needs to be improved in old stands that have not received the second or third commercial thinning

    Producing Decisions and Explanations: A Joint Approach Towards Explainable CNNs

    Get PDF
    Deep Learning models, in particular Convolutional Neural Networks, have become the state-of-the-art in different domains, such as image classification, object detection and other computer vision tasks. However, despite their overwhelming predictive performance, they are still, for the most part, considered black-boxes, making it difficult to understand the reasoning behind their outputted decisions. As such, and with the growing interest in deploying such models into real world scenarios, the need for explainable systems has arisen. Therefore, this dissertation tries to mitigate this growing need, by proposing a novel CNN architecture, composed of an explainer and a classifier. The network, trained end-to-end, constitutes an in-model explainability method, that not only outputs decisions as well as visual explanations of what the network is focusing on to produce such decisions

    A Chronological Survey of Theoretical Advancements in Generative Adversarial Networks for Computer Vision

    Full text link
    Generative Adversarial Networks (GANs) have been workhorse generative models for last many years, especially in the research field of computer vision. Accordingly, there have been many significant advancements in the theory and application of GAN models, which are notoriously hard to train, but produce good results if trained well. There have been many a surveys on GANs, organizing the vast GAN literature from various focus and perspectives. However, none of the surveys brings out the important chronological aspect: how the multiple challenges of employing GAN models were solved one-by-one over time, across multiple landmark research works. This survey intends to bridge that gap and present some of the landmark research works on the theory and application of GANs, in chronological order

    3D CNN methods in biomedical image segmentation

    Get PDF
    A definite trend in Biomedical Imaging is the one towards the integration of increasingly complex interpretative layers to the pure data acquisition process. One of the most interesting and looked-forward goals in the field is the automatic segmentation of objects of interest in extensive acquisition data, target that would allow Biomedical Imaging to look beyond its use as a purely assistive tool to become a cornerstone in ambitious large-scale challenges like the extensive quantitative study of the Human Brain. In 2019 Convolutional Neural Networks represent the state of the art in Biomedical Image segmentation and scientific interests from a variety of fields, spacing from automotive to natural resource exploration, converge to their development. While most of the applications of CNNs are focused on single-image segmentation, biomedical image data -being it MRI, CT-scans, Microscopy, etc- often benefits from three-dimensional volumetric expression. This work explores a reformulation of the CNN segmentation problem that is native to the 3D nature of the data, with particular interest to the applications to Fluorescence Microscopy volumetric data produced at the European Laboratories for Nonlinear Spectroscopy in the context of two different large international human brain study projects: the Human Brain Project and the White House BRAIN Initiative

    Neural Networks forBuilding Semantic Models and Knowledge Graphs

    Get PDF
    1noL'abstract è presente nell'allegato / the abstract is in the attachmentopen677. INGEGNERIA INFORMATInoopenFutia, Giusepp
    • …
    corecore