927 research outputs found

    Are Business Incubators helping? The role of BIs in facilitating tenants’ development

    Get PDF
    Business incubators (BI) are among a variety of initiatives to stimulate economic growth by promoting the creation and development of new companies. The rapid growth of BIs in recent years confirms their importance in the economic fabric. In this study, we conceptualize BIs using insights from knowledge based theory of the firm, resource-based view thinking and capabilities literature. BIs will be seen as service providers geared towards helping their tenants in solving developmental problems. The more problems the BI helps to solve the bigger the incubation value for tenants; further, as tenant firms solve problems they develop important capabilities which will yield increase their chances of survival once they graduate. Results show that tenants unequivocally seek support after experiencing problems. Solving those problems is a function of BI support and other external sources part of each tenant firm’s network of contacts. Age and human capital of tenant firms have a negative impact in the total number of the problems solved, suggesting BIs’ deficiencies in helping more experienced and older tenants. Our main contribution is to shed light on the processes of delivering support to young firms within BIs. Importantly, we assess the value of the BIs’ intervention by measuring the amount of developmental problems they help tenants to overcome. Finally, we discuss the implication of our finding to BI managers, prospective tenants and policy makers

    Launching the Grand Challenges for Ocean Conservation

    Get PDF
    The ten most pressing Grand Challenges in Oceans Conservation were identified at the Oceans Big Think and described in a detailed working document:A Blue Revolution for Oceans: Reengineering Aquaculture for SustainabilityEnding and Recovering from Marine DebrisTransparency and Traceability from Sea to Shore:  Ending OverfishingProtecting Critical Ocean Habitats: New Tools for Marine ProtectionEngineering Ecological Resilience in Near Shore and Coastal AreasReducing the Ecological Footprint of Fishing through Smarter GearArresting the Alien Invasion: Combating Invasive SpeciesCombatting the Effects of Ocean AcidificationEnding Marine Wildlife TraffickingReviving Dead Zones: Combating Ocean Deoxygenation and Nutrient Runof

    Indefinite Knapsack Separable Quadratic Programming: Methods and Applications

    Get PDF
    Quadratic programming (QP) has received significant consideration due to an extensive list of applications. Although polynomial time algorithms for the convex case have been developed, the solution of large scale QPs is challenging due to the computer memory and speed limitations. Moreover, if the QP is nonconvex or includes integer variables, the problem is NP-hard. Therefore, no known algorithm can solve such QPs efficiently. Alternatively, row-aggregation and diagonalization techniques have been developed to solve QP by a sub-problem, knapsack separable QP (KSQP), which has a separable objective function and is constrained by a single knapsack linear constraint and box constraints. KSQP can therefore be considered as a fundamental building-block to solve the general QP and is an important class of problems for research. For the convex KSQP, linear time algorithms are available. However, if some quadratic terms or even only one term is negative in KSQP, the problem is known to be NP-hard, i.e. it is notoriously difficult to solve. The main objective of this dissertation is to develop efficient algorithms to solve general KSQP. Thus, the contributions of this dissertation are five-fold. First, this dissertation includes comprehensive literature review for convex and nonconvex KSQP by considering their computational efficiencies and theoretical complexities. Second, a new algorithm with quadratic time worst-case complexity is developed to globally solve the nonconvex KSQP, having open box constraints. Third, the latter global solver is utilized to develop a new bounding algorithm for general KSQP. Fourth, another new algorithm is developed to find a bound for general KSQP in linear time complexity. Fifth, a list of comprehensive applications for convex KSQP is introduced, and direct applications of indefinite KSQP are described and tested with our newly developed methods. Experiments are conducted to compare the performance of the developed algorithms with that of local, global, and commercial solvers such as IBM CPLEX using randomly generated problems in the context of certain applications. The experimental results show that our proposed methods are superior in speed as well as in the quality of solutions

    Antecipação na tomada de decisão com múltiplos critérios sob incerteza

    Get PDF
    Orientador: Fernando José Von ZubenTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: A presença de incerteza em resultados futuros pode levar a indecisões em processos de escolha, especialmente ao elicitar as importâncias relativas de múltiplos critérios de decisão e de desempenhos de curto vs. longo prazo. Algumas decisões, no entanto, devem ser tomadas sob informação incompleta, o que pode resultar em ações precipitadas com consequências imprevisíveis. Quando uma solução deve ser selecionada sob vários pontos de vista conflitantes para operar em ambientes ruidosos e variantes no tempo, implementar alternativas provisórias flexíveis pode ser fundamental para contornar a falta de informação completa, mantendo opções futuras em aberto. A engenharia antecipatória pode então ser considerada como a estratégia de conceber soluções flexíveis as quais permitem aos tomadores de decisão responder de forma robusta a cenários imprevisíveis. Essa estratégia pode, assim, mitigar os riscos de, sem intenção, se comprometer fortemente a alternativas incertas, ao mesmo tempo em que aumenta a adaptabilidade às mudanças futuras. Nesta tese, os papéis da antecipação e da flexibilidade na automação de processos de tomada de decisão sequencial com múltiplos critérios sob incerteza é investigado. O dilema de atribuir importâncias relativas aos critérios de decisão e a recompensas imediatas sob informação incompleta é então tratado pela antecipação autônoma de decisões flexíveis capazes de preservar ao máximo a diversidade de escolhas futuras. Uma metodologia de aprendizagem antecipatória on-line é então proposta para melhorar a variedade e qualidade dos conjuntos futuros de soluções de trade-off. Esse objetivo é alcançado por meio da previsão de conjuntos de máximo hipervolume esperado, para a qual as capacidades de antecipação de metaheurísticas multi-objetivo são incrementadas com rastreamento bayesiano em ambos os espaços de busca e dos objetivos. A metodologia foi aplicada para a obtenção de decisões de investimento, as quais levaram a melhoras significativas do hipervolume futuro de conjuntos de carteiras financeiras de trade-off avaliadas com dados de ações fora da amostra de treino, quando comparada a uma estratégia míope. Além disso, a tomada de decisões flexíveis para o rebalanceamento de carteiras foi confirmada como uma estratégia significativamente melhor do que a de escolher aleatoriamente uma decisão de investimento a partir da fronteira estocástica eficiente evoluída, em todos os mercados artificiais e reais testados. Finalmente, os resultados sugerem que a antecipação de opções flexíveis levou a composições de carteiras que se mostraram significativamente correlacionadas com as melhorias observadas no hipervolume futuro esperado, avaliado com dados fora das amostras de treinoAbstract: The presence of uncertainty in future outcomes can lead to indecision in choice processes, especially when eliciting the relative importances of multiple decision criteria and of long-term vs. near-term performance. Some decisions, however, must be taken under incomplete information, what may result in precipitated actions with unforeseen consequences. When a solution must be selected under multiple conflicting views for operating in time-varying and noisy environments, implementing flexible provisional alternatives can be critical to circumvent the lack of complete information by keeping future options open. Anticipatory engineering can be then regarded as the strategy of designing flexible solutions that enable decision makers to respond robustly to unpredictable scenarios. This strategy can thus mitigate the risks of strong unintended commitments to uncertain alternatives, while increasing adaptability to future changes. In this thesis, the roles of anticipation and of flexibility on automating sequential multiple criteria decision-making processes under uncertainty are investigated. The dilemma of assigning relative importances to decision criteria and to immediate rewards under incomplete information is then handled by autonomously anticipating flexible decisions predicted to maximally preserve diversity of future choices. An online anticipatory learning methodology is then proposed for improving the range and quality of future trade-off solution sets. This goal is achieved by predicting maximal expected hypervolume sets, for which the anticipation capabilities of multi-objective metaheuristics are augmented with Bayesian tracking in both the objective and search spaces. The methodology has been applied for obtaining investment decisions that are shown to significantly improve the future hypervolume of trade-off financial portfolios for out-of-sample stock data, when compared to a myopic strategy. Moreover, implementing flexible portfolio rebalancing decisions was confirmed as a significantly better strategy than to randomly choosing an investment decision from the evolved stochastic efficient frontier in all tested artificial and real-world markets. Finally, the results suggest that anticipating flexible choices has lead to portfolio compositions that are significantly correlated with the observed improvements in out-of-sample future expected hypervolumeDoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétric

    Aha? Is Creativity Possible in Legal Problem Solving and Teachable in Legal Education?

    Get PDF
    This article continues and expands on my earlier project of seeking to describe how legal negotiation should be understood conceptually and undertaken behaviorally to produce better solutions to legal problems. As structured problem solving requires interests, needs and objectives identification, so too must creative solution seeking have its structure and elements in order to be effectively taught. Because research and teaching about creativity and how we think has expanded greatly since modern legal negotiation theory has been developed, it is now especially appropriate to examine how we might harness this new learning to how we might examine and teach legal creativity in the context of legal negotiation and problem solving. This article explores both the cognitive and behavioral dimensions of legal creativity and offers suggestions for how it can be taught more effectively in legal education, both within the more narrow curricula of negotiation courses and more generally throughout legal education

    Learning to Configure Separators in Branch-and-Cut

    Full text link
    Cutting planes are crucial in solving mixed integer linear programs (MILP) as they facilitate bound improvements on the optimal solution. Modern MILP solvers rely on a variety of separators to generate a diverse set of cutting planes by invoking the separators frequently during the solving process. This work identifies that MILP solvers can be drastically accelerated by appropriately selecting separators to activate. As the combinatorial separator selection space imposes challenges for machine learning, we learn to separate by proposing a novel data-driven strategy to restrict the selection space and a learning-guided algorithm on the restricted space. Our method predicts instance-aware separator configurations which can dynamically adapt during the solve, effectively accelerating the open source MILP solver SCIP by improving the relative solve time up to 72% and 37% on synthetic and real-world MILP benchmarks. Our work complements recent work on learning to select cutting planes and highlights the importance of separator management

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Policymaking Under Pressure: The Perils of Incremental Responses to Climate Change

    Get PDF
    Federal policymakers' reluctance to enact a comprehensive climate change policy during the past decade has coincided with increased awareness of the inevitability and severity of the problems from global climate change. Thus, it is no surprise that piecemeal, sub-federal policies have garnered considerable support. Bolstered by the political science literature on the promise of incrementalism and democratic experimentalism, many proponents of climate change action favor incremental steps in the hope that they will improve the environment or at least serve as a basis for more comprehensive policies. Against this hopeful view, we explain why ad hoc responses to climate change may well be no better than, and possibly will be worse than, no action at all. Incremental climate change policies can give rise to predictable and nontrivial problems, such as non-effect, leakage, climate side effects, other side effects, lock-in, and lulling. Such problems not only can undermine the interim policies themselves but also may delay the adoption of a more comprehensive climate change policy. We present an upstream cap-and-trade policy as one such comprehensive alternative, showing how it would prove less susceptible to the kinds of policy failures that afflict incremental policies. Only by resisting the pressures to act immediately, and investing the necessary time and resources to craft a comprehensive solution, will environmental policymakers be able to guard against the perils that afflict ad hoc policymaking.
    • …
    corecore