2,498 research outputs found

    Privacy Preserving Multi-Server k-means Computation over Horizontally Partitioned Data

    Full text link
    The k-means clustering is one of the most popular clustering algorithms in data mining. Recently a lot of research has been concentrated on the algorithm when the dataset is divided into multiple parties or when the dataset is too large to be handled by the data owner. In the latter case, usually some servers are hired to perform the task of clustering. The dataset is divided by the data owner among the servers who together perform the k-means and return the cluster labels to the owner. The major challenge in this method is to prevent the servers from gaining substantial information about the actual data of the owner. Several algorithms have been designed in the past that provide cryptographic solutions to perform privacy preserving k-means. We provide a new method to perform k-means over a large set using multiple servers. Our technique avoids heavy cryptographic computations and instead we use a simple randomization technique to preserve the privacy of the data. The k-means computed has exactly the same efficiency and accuracy as the k-means computed over the original dataset without any randomization. We argue that our algorithm is secure against honest but curious and passive adversary.Comment: 19 pages, 4 tables. International Conference on Information Systems Security. Springer, Cham, 201

    Chameleon: A Hybrid Secure Computation Framework for Machine Learning Applications

    Get PDF
    We present Chameleon, a novel hybrid (mixed-protocol) framework for secure function evaluation (SFE) which enables two parties to jointly compute a function without disclosing their private inputs. Chameleon combines the best aspects of generic SFE protocols with the ones that are based upon additive secret sharing. In particular, the framework performs linear operations in the ring Z2l\mathbb{Z}_{2^l} using additively secret shared values and nonlinear operations using Yao's Garbled Circuits or the Goldreich-Micali-Wigderson protocol. Chameleon departs from the common assumption of additive or linear secret sharing models where three or more parties need to communicate in the online phase: the framework allows two parties with private inputs to communicate in the online phase under the assumption of a third node generating correlated randomness in an offline phase. Almost all of the heavy cryptographic operations are precomputed in an offline phase which substantially reduces the communication overhead. Chameleon is both scalable and significantly more efficient than the ABY framework (NDSS'15) it is based on. Our framework supports signed fixed-point numbers. In particular, Chameleon's vector dot product of signed fixed-point numbers improves the efficiency of mining and classification of encrypted data for algorithms based upon heavy matrix multiplications. Our evaluation of Chameleon on a 5 layer convolutional deep neural network shows 133x and 4.2x faster executions than Microsoft CryptoNets (ICML'16) and MiniONN (CCS'17), respectively

    A Touch of Evil: High-Assurance Cryptographic Hardware from Untrusted Components

    Get PDF
    The semiconductor industry is fully globalized and integrated circuits (ICs) are commonly defined, designed and fabricated in different premises across the world. This reduces production costs, but also exposes ICs to supply chain attacks, where insiders introduce malicious circuitry into the final products. Additionally, despite extensive post-fabrication testing, it is not uncommon for ICs with subtle fabrication errors to make it into production systems. While many systems may be able to tolerate a few byzantine components, this is not the case for cryptographic hardware, storing and computing on confidential data. For this reason, many error and backdoor detection techniques have been proposed over the years. So far all attempts have been either quickly circumvented, or come with unrealistically high manufacturing costs and complexity. This paper proposes Myst, a practical high-assurance architecture, that uses commercial off-the-shelf (COTS) hardware, and provides strong security guarantees, even in the presence of multiple malicious or faulty components. The key idea is to combine protective-redundancy with modern threshold cryptographic techniques to build a system tolerant to hardware trojans and errors. To evaluate our design, we build a Hardware Security Module that provides the highest level of assurance possible with COTS components. Specifically, we employ more than a hundred COTS secure crypto-coprocessors, verified to FIPS140-2 Level 4 tamper-resistance standards, and use them to realize high-confidentiality random number generation, key derivation, public key decryption and signing. Our experiments show a reasonable computational overhead (less than 1% for both Decryption and Signing) and an exponential increase in backdoor-tolerance as more ICs are added

    Multi OwnerSecret Key Generation for Ranked Multi-Keyword Search in Cloud

    Get PDF
    For privacy concerns, secure searches over encrypted cloud data has motivated several research works under the single owner model. However, most cloud servers in practice do not just serve one owner; instead, they support multiple owners to share the benefits brought by cloud computing. The issue of recovering the encrypted data over the cloud is mind boggling. Numerous search procedures are utilized for recovering the scrambled data from cloud. This paper axes around an arrangement of keyword Search instruments over encrypted data, which gives secured data recovery high proficiency. Search over encrypted data is a method of extraordinary enthusiasm for the cloud computing time, in light of the fact that numerous trust that delicate data must be scrambled before outsourcing to the cloud servers with a specific end goal to guarantee client data security. Concocting a productive and secure search scheme over scrambled data includes strategies from ple spaces. It presumes that, keyword search is intended to be best methodology for searching the encrypted data in the Cloud. It gives more productivity than single keyword search

    Verifiable Secret Key Generation for Ranked Multi-Keyword Search in Cloud

    Get PDF
    Cloud storage is exceptionally well known in ongoing pattern as it gives more advantages over the customary storage arrangements. To guarantee security in cloud, encryption methods assume a noteworthy part when data are outsourced to the cloud. The issue of recovering the encrypted data over the cloud is mind boggling. Numerous search procedures are utilized for recovering the scrambled data from cloud. This paper axes around an arrangement of keyword Search instruments over encrypted data, which gives secured data recovery high proficiency. Search over encrypted data is a method of extraordinary enthusiasm for the cloud computing time, in light of the fact that numerous trust that delicate data must be scrambled before outsourcing to the cloud servers with a specific end goal to guarantee client data security. Concocting a productive and secure search scheme over scrambled data includes strategies from ple spaces. It presumes that, keyword search is intended to be best methodology for searching the encrypted data in the Cloud. It gives more productivity than single keyword search

    Privacy-Preserving Secret Shared Computations using MapReduce

    Full text link
    Data outsourcing allows data owners to keep their data at \emph{untrusted} clouds that do not ensure the privacy of data and/or computations. One useful framework for fault-tolerant data processing in a distributed fashion is MapReduce, which was developed for \emph{trusted} private clouds. This paper presents algorithms for data outsourcing based on Shamir's secret-sharing scheme and for executing privacy-preserving SQL queries such as count, selection including range selection, projection, and join while using MapReduce as an underlying programming model. Our proposed algorithms prevent an adversary from knowing the database or the query while also preventing output-size and access-pattern attacks. Interestingly, our algorithms do not involve the database owner, which only creates and distributes secret-shares once, in answering any query, and hence, the database owner also cannot learn the query. Logically and experimentally, we evaluate the efficiency of the algorithms on the following parameters: (\textit{i}) the number of communication rounds (between a user and a server), (\textit{ii}) the total amount of bit flow (between a user and a server), and (\textit{iii}) the computational load at the user and the server.\BComment: IEEE Transactions on Dependable and Secure Computing, Accepted 01 Aug. 201

    Raziel: Private and Verifiable Smart Contracts on Blockchains

    Get PDF
    Raziel combines secure multi-party computation and proof-carrying code to provide privacy, correctness and verifiability guarantees for smart contracts on blockchains. Effectively solving DAO and Gyges attacks, this paper describes an implementation and presents examples to demonstrate its practical viability (e.g., private and verifiable crowdfundings and investment funds). Additionally, we show how to use Zero-Knowledge Proofs of Proofs (i.e., Proof-Carrying Code certificates) to prove the validity of smart contracts to third parties before their execution without revealing anything else. Finally, we show how miners could get rewarded for generating pre-processing data for secure multi-party computation.Comment: Support: cothority/ByzCoin/OmniLedge
    corecore