99 research outputs found

    Automated object detection of mechanical fasteners using faster region based convolutional neural networks

    Get PDF
    Mechanical fasteners are widely used in manufacturing of hardware and mechanical components such as automobiles, turbine & power generation and industries. Object detection method play a vital role to make a smart system for the society. Internet of things (IoT) leads to automation based on sensors and actuators not enough to build the systems due to limitations of sensors. Computer vision is the one which makes IoT too much smarter using deep learning techniques. Object detection is used to detect, recognize and localize the object in an image or a real time video. In industry revolution, robot arm is used to fit the fasteners to the automobile components. This system will helps the robot to detect the object of fasteners such as screw and nails accordingly to fit to the vehicle moved in the assembly line. Faster R-CNN deep learning algorithm is used to train the custom dataset and object detection is used to detect the fasteners. Region based convolutional neural networks (Faster R-CNN) uses a region proposed network (RPN) network to train the model efficiently and also with the help of Region of Interest able to localize the screw and nails objects with a mean average precision of 0.72 percent leads to accuracy of 95 percent object detectio

    Computational Spectral Imaging: A Contemporary Overview

    Full text link
    Spectral imaging collects and processes information along spatial and spectral coordinates quantified in discrete voxels, which can be treated as a 3D spectral data cube. The spectral images (SIs) allow identifying objects, crops, and materials in the scene through their spectral behavior. Since most spectral optical systems can only employ 1D or maximum 2D sensors, it is challenging to directly acquire the 3D information from available commercial sensors. As an alternative, computational spectral imaging (CSI) has emerged as a sensing tool where the 3D data can be obtained using 2D encoded projections. Then, a computational recovery process must be employed to retrieve the SI. CSI enables the development of snapshot optical systems that reduce acquisition time and provide low computational storage costs compared to conventional scanning systems. Recent advances in deep learning (DL) have allowed the design of data-driven CSI to improve the SI reconstruction or, even more, perform high-level tasks such as classification, unmixing, or anomaly detection directly from 2D encoded projections. This work summarises the advances in CSI, starting with SI and its relevance; continuing with the most relevant compressive spectral optical systems. Then, CSI with DL will be introduced, and the recent advances in combining the physical optical design with computational DL algorithms to solve high-level tasks

    A divide-and-conquer approach for genomic prediction in rubber tree using machine learning

    Get PDF
    International audienceRubber tree ( Hevea brasiliensis ) is the main feedstock for commercial rubber; however, its long vegetative cycle has hindered the development of more productive varieties via breeding programs. With the availability of H. brasiliensis genomic data, several linkage maps with associated quantitative trait loci have been constructed and suggested as a tool for marker-assisted selection. Nonetheless, novel genomic strategies are still needed, and genomic selection (GS) may facilitate rubber tree breeding programs aimed at reducing the required cycles for performance assessment. Even though such a methodology has already been shown to be a promising tool for rubber tree breeding, increased model predictive capabilities and practical application are still needed. Here, we developed a novel machine learning-based approach for predicting rubber tree stem circumference based on molecular markers. Through a divide-and-conquer strategy, we propose a neural network prediction system with two stages: (1) subpopulation prediction and (2) phenotype estimation. This approach yielded higher accuracies than traditional statistical models in a single-environment scenario. By delivering large accuracy improvements, our methodology represents a powerful tool for use in Hevea GS strategies. Therefore, the incorporation of machine learning techniques into rubber tree GS represents an opportunity to build more robust models and optimize Hevea breeding programs

    A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends

    Get PDF
    Computer vision (CV) is a big and important field in artificial intelligence covering a wide range of applications. Image analysis is a major task in CV aiming to extract, analyse and understand the visual content of images. However, imagerelated tasks are very challenging due to many factors, e.g., high variations across images, high dimensionality, domain expertise requirement, and image distortions. Evolutionary computation (EC) approaches have been widely used for image analysis with significant achievement. However, there is no comprehensive survey of existing EC approaches to image analysis. To fill this gap, this paper provides a comprehensive survey covering all essential EC approaches to important image analysis tasks including edge detection, image segmentation, image feature analysis, image classification, object detection, and others. This survey aims to provide a better understanding of evolutionary computer vision (ECV) by discussing the contributions of different approaches and exploring how and why EC is used for CV and image analysis. The applications, challenges, issues, and trends associated to this research field are also discussed and summarised to provide further guidelines and opportunities for future research

    Extracting Information from Multimodal Remote Sensing Data for Sea Ice Characterization

    Get PDF
    Remote sensing is the discipline that studies acquisition, preparation and analysis of spectral, spatial and temporal properties of objects without direct touch or contact. It is a field of great importance to understanding the climate system and its changes, as well as for conducting operations in the Arctic. A current challenge however is that most sensory equipment can only capture one or fewer of the characteristics needed to accurately describe ground objects through their temporal, spatial, spectral and radiometric resolution characteristics. This in turn motivates the fusing of complimentary modalities for potentially improved accuracy and stability in analysis but it also leads to problems when trying to merge heterogeneous data with different statistical, geometric and physical qualities. Another concern in the remote sensing of arctic regions is the scarcity of high quality labeled data but simultaneous abundance of unlabeled data as the gathering of labeled data can be both costly and time consuming. It could therefore be of great value to explore routes that can automate this process in ways that target both the situation regarding available data and the difficulties from fusing of heterogeneous multimodal data. To this end Semi-Supervised methods were considered for their ability to leverage smaller amounts of carefully labeled data in combination with more widely available unlabeled data in achieving greater classification performance. Strengths and limitations of three algorithms for real life applications are assessed through experiments on datasets from arctic and urban areas. The first two algorithms, Deep Semi-Supervised Label Propagation (LP) and MixMatch Holistic SSL (MixMatch), consider simultaneous processing of multimodal remote sensing data with additional extracted Gray Level Co-occurrence Matrix texture features for image classification. LP trains in alternating steps of supervised learning on potentially pseudolabeled data and steps of deciding new labels through node propagation while MixMatch mixes loss terms from several leading algorithms to gain their respective benefits. Another method, Graph Fusion Merriman Bence Osher (GMBO), explores processing of modalities in parallel by constructing a fused graph from complimentary input modalities and Ginzburg-Landau minimization on an approximated Graph Laplacian. Results imply that inclusion of extracted GLCM features could be beneficial for classification of multimodal remote sensing data, and that GMBO has merits for operational use in the Arctic given that certain data prerequisites are met

    Advances in Hyperspectral Image Classification Methods for Vegetation and Agricultural Cropland Studies

    Get PDF
    Hyperspectral data are becoming more widely available via sensors on airborne and unmanned aerial vehicle (UAV) platforms, as well as proximal platforms. While space-based hyperspectral data continue to be limited in availability, multiple spaceborne Earth-observing missions on traditional platforms are scheduled for launch, and companies are experimenting with small satellites for constellations to observe the Earth, as well as for planetary missions. Land cover mapping via classification is one of the most important applications of hyperspectral remote sensing and will increase in significance as time series of imagery are more readily available. However, while the narrow bands of hyperspectral data provide new opportunities for chemistry-based modeling and mapping, challenges remain. Hyperspectral data are high dimensional, and many bands are highly correlated or irrelevant for a given classification problem. For supervised classification methods, the quantity of training data is typically limited relative to the dimension of the input space. The resulting Hughes phenomenon, often referred to as the curse of dimensionality, increases potential for unstable parameter estimates, overfitting, and poor generalization of classifiers. This is particularly problematic for parametric approaches such as Gaussian maximum likelihoodbased classifiers that have been the backbone of pixel-based multispectral classification methods. This issue has motivated investigation of alternatives, including regularization of the class covariance matrices, ensembles of weak classifiers, development of feature selection and extraction methods, adoption of nonparametric classifiers, and exploration of methods to exploit unlabeled samples via semi-supervised and active learning. Data sets are also quite large, motivating computationally efficient algorithms and implementations. This chapter provides an overview of the recent advances in classification methods for mapping vegetation using hyperspectral data. Three data sets that are used in the hyperspectral classification literature (e.g., Botswana Hyperion satellite data and AVIRIS airborne data over both Kennedy Space Center and Indian Pines) are described in Section 3.2 and used to illustrate methods described in the chapter. An additional high-resolution hyperspectral data set acquired by a SpecTIR sensor on an airborne platform over the Indian Pines area is included to exemplify the use of new deep learning approaches, and a multiplatform example of airborne hyperspectral data is provided to demonstrate transfer learning in hyperspectral image classification. Classical approaches for supervised and unsupervised feature selection and extraction are reviewed in Section 3.3. In particular, nonlinearities exhibited in hyperspectral imagery have motivated development of nonlinear feature extraction methods in manifold learning, which are outlined in Section 3.3.1.4. Spatial context is also important in classification of both natural vegetation with complex textural patterns and large agricultural fields with significant local variability within fields. Approaches to exploit spatial features at both the pixel level (e.g., co-occurrencebased texture and extended morphological attribute profiles [EMAPs]) and integration of segmentation approaches (e.g., HSeg) are discussed in this context in Section 3.3.2. Recently, classification methods that leverage nonparametric methods originating in the machine learning community have grown in popularity. An overview of both widely used and newly emerging approaches, including support vector machines (SVMs), Gaussian mixture models, and deep learning based on convolutional neural networks is provided in Section 3.4. Strategies to exploit unlabeled samples, including active learning and metric learning, which combine feature extraction and augmentation of the pool of training samples in an active learning framework, are outlined in Section 3.5. Integration of image segmentation with classification to accommodate spatial coherence typically observed in vegetation is also explored, including as an integrated active learning system. Exploitation of multisensor strategies for augmenting the pool of training samples is investigated via a transfer learning framework in Section 3.5.1.2. Finally, we look to the future, considering opportunities soon to be provided by new paradigms, as hyperspectral sensing is becoming common at multiple scales from ground-based and airborne autonomous vehicles to manned aircraft and space-based platforms

    Large Area Land Cover Mapping Using Deep Neural Networks and Landsat Time-Series Observations

    Get PDF
    This dissertation focuses on analysis and implementation of deep learning methodologies in the field of remote sensing to enhance land cover classification accuracy, which has important applications in many areas of environmental planning and natural resources management. The first manuscript conducted a land cover analysis on 26 Landsat scenes in the United States by considering six classifier variants. An extensive grid search was conducted to optimize classifier parameters using only the spectral components of each pixel. Results showed no gain in using deep networks by using only spectral components over conventional classifiers, possibly due to the small reference sample size and richness of features. The effect of changing training data size, class distribution, or scene heterogeneity were also studied and we found all of them having significant effect on classifier accuracy. The second manuscript reviewed 103 research papers on the application of deep learning methodologies in remote sensing, with emphasis on per-pixel classification of mono-temporal data and utilizing spectral and spatial data dimensions. A meta-analysis quantified deep network architecture improvement over selected convolutional classifiers. The effect of network size, learning methodology, input data dimensionality and training data size were also studied, with deep models providing enhanced performance over conventional one using spectral and spatial data. The analysis found that input dataset was a major limitation and available datasets have already been utilized to their maximum capacity. The third manuscript described the steps to build the full environment for dataset generation based on Landsat time-series data using spectral, spatial, and temporal information available for each pixel. A large dataset containing one sample block from each of 84 ecoregions in the conterminous United States (CONUS) was created and then processed by a hybrid convolutional+recurrent deep network, and the network structure was optimized with thousands of simulations. The developed model achieved an overall accuracy of 98% on the test dataset. Also, the model was evaluated for its overall and per-class performance under different conditions, including individual blocks, individual or combined Landsat sensors, and different sequence lengths. The analysis found that although the deep model performance per each block is superior to other candidates, the per block performance still varies considerably from block to block. This suggests extending the work by model fine-tuning for local areas. The analysis also found that including more time stamps or combining different Landsat sensor observations in the model input significantly enhances the model performance
    • …
    corecore