12,649 research outputs found

    Design-Space Exploration of Mixed-precision DNN Accelerators based on Sum-Together Multipliers

    Get PDF
    Mixed-precision quantization (MPQ) is gaining momentum in academia and industry as a way to improve the trade-off between accuracy and latency of Deep Neural Networks (DNNs) in edge applications. MPQ requires dedicated hardware to support different bit-widths. One approach uses Precision-Scalable MAC units (PSMACs) based on multipliers operating in Sum-Together (ST) mode. These can be configured to compute N = 1, 2, 4 multiplications/dot-products in parallel with operands at 16/N bits. We contribute to the State of the Art (SoA) in three directions: we compare for the first time the SoA ST multipliers architectures in performance, power and area; compared to previous work, we contribute to the portfolio of ST-based accelerators proposing three designs for the most common DNN algorithms: 2D-Convolution, Depth-wise Convolution and Fully-Connected; we show how these accelerators can be obtained with a High-Level Synthesis (HLS) flow. In particular, we perform a design-space exploration (DSE) in area, latency, power, varying many knobs, including PSMAC units parallelism, clock frequency and ST multipliers type. From the DSE on a 28-nm technology we observe that both at multiplier level and at accelerator level there is no one-fits-all solution for each possible scenario. Our findings allow accelerators’ designers to choose, out of a rich variety, the best combination of ST multiplier and HLS knobs depending on the target, either high performance, low area, or low power

    Open-ended evolution to discover analogue circuits for beyond conventional applications

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10710-012-9163-8. Copyright @ Springer 2012.Analogue circuits synthesised by means of open-ended evolutionary algorithms often have unconventional designs. However, these circuits are typically highly compact, and the general nature of the evolutionary search methodology allows such designs to be used in many applications. Previous work on the evolutionary design of analogue circuits has focused on circuits that lie well within analogue application domain. In contrast, our paper considers the evolution of analogue circuits that are usually synthesised in digital logic. We have developed four computational circuits, two voltage distributor circuits and a time interval metre circuit. The approach, despite its simplicity, succeeds over the design tasks owing to the employment of substructure reuse and incremental evolution. Our findings expand the range of applications that are considered suitable for evolutionary electronics
    • …
    corecore