3,478 research outputs found

    Robust Localized Multi-view Subspace Clustering

    Full text link
    In multi-view clustering, different views may have different confidence levels when learning a consensus representation. Existing methods usually address this by assigning distinctive weights to different views. However, due to noisy nature of real-world applications, the confidence levels of samples in the same view may also vary. Thus considering a unified weight for a view may lead to suboptimal solutions. In this paper, we propose a novel localized multi-view subspace clustering model that considers the confidence levels of both views and samples. By assigning weight to each sample under each view properly, we can obtain a robust consensus representation via fusing the noiseless structures among views and samples. We further develop a regularizer on weight parameters based on the convex conjugacy theory, and samples weights are determined in an adaptive manner. An efficient iterative algorithm is developed with a convergence guarantee. Experimental results on four benchmarks demonstrate the correctness and effectiveness of the proposed model.Comment: 7 page

    Multi-View Multiple Clustering

    Full text link
    Multiple clustering aims at exploring alternative clusterings to organize the data into meaningful groups from different perspectives. Existing multiple clustering algorithms are designed for single-view data. We assume that the individuality and commonality of multi-view data can be leveraged to generate high-quality and diverse clusterings. To this end, we propose a novel multi-view multiple clustering (MVMC) algorithm. MVMC first adapts multi-view self-representation learning to explore the individuality encoding matrices and the shared commonality matrix of multi-view data. It additionally reduces the redundancy (i.e., enhancing the individuality) among the matrices using the Hilbert-Schmidt Independence Criterion (HSIC), and collects shared information by forcing the shared matrix to be smooth across all views. It then uses matrix factorization on the individual matrices, along with the shared matrix, to generate diverse clusterings of high-quality. We further extend multiple co-clustering on multi-view data and propose a solution called multi-view multiple co-clustering (MVMCC). Our empirical study shows that MVMC (MVMCC) can exploit multi-view data to generate multiple high-quality and diverse clusterings (co-clusterings), with superior performance to the state-of-the-art methods.Comment: 7 pages, 5 figures, uses ijcai19.st

    Joint Adaptive Neighbours and Metric Learning for Multi-view Subspace Clustering

    Full text link
    Due to the existence of various views or representations in many real-world data, multi-view learning has drawn much attention recently. Multi-view spectral clustering methods based on similarity matrixes or graphs are pretty popular. Generally, these algorithms learn informative graphs by directly utilizing original data. However, in the real-world applications, original data often contain noises and outliers that lead to unreliable graphs. In addition, different views may have different contributions to data clustering. In this paper, a novel Multiview Subspace Clustering method unifying Adaptive neighbours and Metric learning (MSCAM), is proposed to address the above problems. In this method, we use the subspace representations of different views to adaptively learn a consensus similarity matrix, uncovering the subspace structure and avoiding noisy nature of original data. For all views, we also learn different Mahalanobis matrixes that parameterize the squared distances and consider the contributions of different views. Further, we constrain the graph constructed by the similarity matrix to have exact c (c is the number of clusters) connected components. An iterative algorithm is developed to solve this optimization problem. Moreover, experiments on a synthetic dataset and different real-world datasets demonstrate the effectiveness of MSCAM.Comment: 9 page

    Robust Kernelized Multi-View Self-Representations for Clustering by Tensor Multi-Rank Minimization

    Full text link
    Most recently, tensor-SVD is implemented on multi-view self-representation clustering and has achieved the promising results in many real-world applications such as face clustering, scene clustering and generic object clustering. However, tensor-SVD based multi-view self-representation clustering is proposed originally to solve the clustering problem in the multiple linear subspaces, leading to unsatisfactory results when dealing with the case of non-linear subspaces. To handle data clustering from the non-linear subspaces, a kernelization method is designed by mapping the data from the original input space to a new feature space in which the transformed data can be clustered by a multiple linear clustering method. In this paper, we make an optimization model for the kernelized multi-view self-representation clustering problem. We also develop a new efficient algorithm based on the alternation direction method and infer a closed-form solution. Since all the subproblems can be solved exactly, the proposed optimization algorithm is guaranteed to obtain the optimal solution. In particular, the original tensor-based multi-view self-representation clustering problem is a special case of our approach and can be solved by our algorithm. Experimental results on several popular real-world clustering datasets demonstrate that our approach achieves the state-of-the-art performance.Comment: 8 pages, 5 figures, AAAI2018 submitte

    Feature Concatenation Multi-view Subspace Clustering

    Full text link
    Multi-view clustering aims to achieve more promising clustering results than single-view clustering by exploring the multi-view information. Since statistic properties of different views are diverse, even incompatible, few approaches implement multi-view clustering based on the concatenated features directly. However, feature concatenation is a natural way to combine multiple views. To this end, this paper proposes a novel multi-view subspace clustering approach dubbed Feature Concatenation Multi-view Subspace Clustering (FCMSC). Specifically, by exploring the consensus information, multi-view data are concatenated into a joint representation firstly, then, l2,1l_{2,1}-norm is integrated into the objective function to deal with the sample-specific and cluster-specific corruptions of multiple views for benefiting the clustering performance. Furthermore, by introducing graph Laplacians of multiple views, a graph regularized FCMSC is also introduced to explore both the consensus information and complementary information for clustering. It is noteworthy that the obtained coefficient matrix is not derived by directly applying the Low-Rank Representation (LRR) to the joint view representation simply. Finally, an effective algorithm based on the Augmented Lagrangian Multiplier (ALM) is designed to optimized the objective functions. Comprehensive experiments on six real world datasets illustrate the superiority of the proposed methods over several state-of-the-art approaches for multi-view clustering

    Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation

    Full text link
    This paper explores the problem of multi-view spectral clustering (MVSC) based on tensor low-rank modeling. Unlike the existing methods that all adopt an off-the-shelf tensor low-rank norm without considering the special characteristics of the tensor in MVSC, we design a novel structured tensor low-rank norm tailored to MVSC. Specifically, we explicitly impose a symmetric low-rank constraint and a structured sparse low-rank constraint on the frontal and horizontal slices of the tensor to characterize the intra-view and inter-view relationships, respectively. Moreover, the two constraints could be jointly optimized to achieve mutual refinement. On the basis of the novel tensor low-rank norm, we formulate MVSC as a convex low-rank tensor recovery problem, which is then efficiently solved with an augmented Lagrange multiplier based method iteratively. Extensive experimental results on five benchmark datasets show that the proposed method outperforms state-of-the-art methods to a significant extent. Impressively, our method is able to produce perfect clustering. In addition, the parameters of our method can be easily tuned, and the proposed model is robust to different datasets, demonstrating its potential in practice

    A Survey on Multi-View Clustering

    Full text link
    With advances in information acquisition technologies, multi-view data become ubiquitous. Multi-view learning has thus become more and more popular in machine learning and data mining fields. Multi-view unsupervised or semi-supervised learning, such as co-training, co-regularization has gained considerable attention. Although recently, multi-view clustering (MVC) methods have been developed rapidly, there has not been a survey to summarize and analyze the current progress. Therefore, this paper reviews the common strategies for combining multiple views of data and based on this summary we propose a novel taxonomy of the MVC approaches. We further discuss the relationships between MVC and multi-view representation, ensemble clustering, multi-task clustering, multi-view supervised and semi-supervised learning. Several representative real-world applications are elaborated. To promote future development of MVC, we envision several open problems that may require further investigation and thorough examination.Comment: 17 pages, 4 figure

    Deep Multimodal Subspace Clustering Networks

    Full text link
    We present convolutional neural network (CNN) based approaches for unsupervised multimodal subspace clustering. The proposed framework consists of three main stages - multimodal encoder, self-expressive layer, and multimodal decoder. The encoder takes multimodal data as input and fuses them to a latent space representation. The self-expressive layer is responsible for enforcing the self-expressiveness property and acquiring an affinity matrix corresponding to the data points. The decoder reconstructs the original input data. The network uses the distance between the decoder's reconstruction and the original input in its training. We investigate early, late and intermediate fusion techniques and propose three different encoders corresponding to them for spatial fusion. The self-expressive layers and multimodal decoders are essentially the same for different spatial fusion-based approaches. In addition to various spatial fusion-based methods, an affinity fusion-based network is also proposed in which the self-expressive layer corresponding to different modalities is enforced to be the same. Extensive experiments on three datasets show that the proposed methods significantly outperform the state-of-the-art multimodal subspace clustering methods

    Guided Co-training for Large-Scale Multi-View Spectral Clustering

    Full text link
    In many real-world applications, we have access to multiple views of the data, each of which characterizes the data from a distinct aspect. Several previous algorithms have demonstrated that one can achieve better clustering accuracy by integrating information from all views appropriately than using only an individual view. Owing to the effectiveness of spectral clustering, many multi-view clustering methods are based on it. Unfortunately, they have limited applicability to large-scale data due to the high computational complexity of spectral clustering. In this work, we propose a novel multi-view spectral clustering method for large-scale data. Our approach is structured under the guided co-training scheme to fuse distinct views, and uses the sampling technique to accelerate spectral clustering. More specifically, we first select pp (≪n\ll n) landmark points and then approximate the eigen-decomposition accordingly. The augmented view, which is essential to guided co-training process, can then be quickly determined by our method. The proposed algorithm scales linearly with the number of given data. Extensive experiments have been performed and the results support the advantage of our method for handling the large-scale multi-view situation

    Multiple Kernel kk-Means Clustering by Selecting Representative Kernels

    Full text link
    To cluster data that are not linearly separable in the original feature space, kk-means clustering was extended to the kernel version. However, the performance of kernel kk-means clustering largely depends on the choice of kernel function. To mitigate this problem, multiple kernel learning has been introduced into the kk-means clustering to obtain an optimal kernel combination for clustering. Despite the success of multiple kernel kk-means clustering in various scenarios, few of the existing work update the combination coefficients based on the diversity of kernels, which leads to the result that the selected kernels contain high redundancy and would degrade the clustering performance and efficiency. In this paper, we propose a simple but efficient strategy that selects a diverse subset from the pre-specified kernels as the representative kernels, and then incorporate the subset selection process into the framework of multiple kk-means clustering. The representative kernels can be indicated as the significant combination weights. Due to the non-convexity of the obtained objective function, we develop an alternating minimization method to optimize the combination coefficients of the selected kernels and the cluster membership alternatively. We evaluate the proposed approach on several benchmark and real-world datasets. The experimental results demonstrate the competitiveness of our approach in comparison with the state-of-the-art methods.Comment: 8 pages, 7 figure
    • …
    corecore