486 research outputs found

    Modeling of wide-band MIMO radio channels based on NLoS indoor measurements

    Get PDF
    Link to published version (if available)

    Turbo Packet Combining for Broadband Space-Time BICM Hybrid-ARQ Systems with Co-Channel Interference

    Full text link
    In this paper, efficient turbo packet combining for single carrier (SC) broadband multiple-input--multiple-output (MIMO) hybrid--automatic repeat request (ARQ) transmission with unknown co-channel interference (CCI) is studied. We propose a new frequency domain soft minimum mean square error (MMSE)-based signal level combining technique where received signals and channel frequency responses (CFR)s corresponding to all retransmissions are used to decode the data packet. We provide a recursive implementation algorithm for the introduced scheme, and show that both its computational complexity and memory requirements are quite insensitive to the ARQ delay, i.e., maximum number of ARQ rounds. Furthermore, we analyze the asymptotic performance, and show that under a sum-rank condition on the CCI MIMO ARQ channel, the proposed packet combining scheme is not interference-limited. Simulation results are provided to demonstrate the gains offered by the proposed technique.Comment: 12 pages, 7 figures, and 2 table

    Two-path succesive relaying schemes in the presence of inter-relay interference

    Get PDF
    Relaying is a promising technique to improve wireless network performance. A conventional relay transmits and receives signals in two orthogonal channels due to half duplex constraint of wireless network. This results in inefficient use of spectral resources. Two-Path Successive Relaying (TPSR) has been proposed to recover loss in spectral efficiency. However, the performance of TPSR is degraded by Inter-Relay Interference (IRI). This thesis investigates the performance of TPSR affected by IRI and proposes several schemes to improve relaying reliability, throughput and secrecy. Simulations revealed that the existing TPSR could perform worse than the conventional Half Duplex Relaying (HDR) scheme. Opportunistic TPSR schemes are proposed to improve the capacity performance. Several relay pair selection criteria are developed to ensure the selection of the best performing relay pair. Adaptive schemes which dynamically switch between TPSR and conventional HDR are proposed to further improve the performance. Simulation and analytical results show that the proposed schemes can achieve up to 45% ergodic capacity improvement and lower outage probability compared to baseline schemes, while achieving the maximum diversity and multiplexing tradeoff of the multi-input single-output channel. In addition, this thesis proposes secrecy TPSR schemes to protect secrecy of wireless transmission from eavesdropper. The use of two relays in the proposed schemes deliver more robust secrecy transmission while the use of scheduled jamming signals improves secrecy rate. Simulation and analytical results reveal that the proposed schemes can achieve up to 62% ergodic secrecy capacity improvement and quadratically lower intercept and secrecy outage probabilities if compared to existing schemes. Overall, this thesis demonstrates that the proposed TPSR schemes are able to deliver performance improvement in terms of throughput, reliability and secrecy in the presence of IRI

    Wireless transmission protocols using relays for broadcast and information exchange channels

    No full text
    Relays have been used to overcome existing network performance bottlenecks in meeting the growing demand for large bandwidth and high quality of service (QoS) in wireless networks. This thesis proposes several wireless transmission protocols using relays in practical multi-user broadcast and information exchange channels. The main theme is to demonstrate that efficient use of relays provides an additional dimension to improve reliability, throughput, power efficiency and secrecy. First, a spectrally efficient cooperative transmission protocol is proposed for the multiple-input and singleoutput (MISO) broadcast channel to improve the reliability of wireless transmission. The proposed protocol mitigates co-channel interference and provides another dimension to improve the diversity gain. Analytical and simulation results show that outage probability and the diversity and multiplexing tradeoff of the proposed cooperative protocol outperforms the non-cooperative scheme. Second, a two-way relaying protocol is proposed for the multi-pair, two-way relaying channel to improve the throughput and reliability. The proposed protocol enables both the users and the relay to participate in interference cancellation. Several beamforming schemes are proposed for the multi-antenna relay. Analytical and simulation results reveal that the proposed protocol delivers significant improvements in ergodic capacity, outage probability and the diversity and multiplexing tradeoff if compared to existing schemes. Third, a joint beamforming and power management scheme is proposed for multiple-input and multiple-output (MIMO) two-way relaying channel to improve the sum-rate. Network power allocation and power control optimisation problems are formulated and solved using convex optimisation techniques. Simulation results verify that the proposed scheme delivers better sum-rate or consumes lower power when compared to existing schemes. Fourth, two-way secrecy schemes which combine one-time pad and wiretap coding are proposed for the scalar broadcast channel to improve secrecy rate. The proposed schemes utilise the channel reciprocity and employ relays to forward secret messages. Analytical and simulation results reveal that the proposed schemes are able to achieve positive secrecy rates even when the number of users is large. All of these new wireless transmission protocols help to realise better throughput, reliability, power efficiency and secrecy for wireless broadcast and information exchange channels through the efficient use of relays

    On the Design of Artificial-Noise-Aided Secure Multi-Antenna Transmission in Slow Fading Channels

    Full text link
    In this paper, we investigate the design of artificial-noise-aided secure multi-antenna transmission in slow fading channels. The primary design concerns include the transmit power allocation and the rate parameters of the wiretap code. We consider two scenarios with different complexity levels: i) the design parameters are chosen to be fixed for all transmissions, ii) they are adaptively adjusted based on the instantaneous channel feedback from the intended receiver. In both scenarios, we provide explicit design solutions for achieving the maximal throughput subject to a secrecy constraint, given by a maximum allowable secrecy outage probability. We then derive accurate approximations for the maximal throughput in both scenarios in the high signal-to-noise ratio region, and give new insights into the additional power cost for achieving a higher security level, whilst maintaining a specified target throughput. In the end, the throughput gain of adaptive transmission over non-adaptive transmission is also quantified and analyzed.Comment: to appear in IEEE Transactions on Vehicular Technolog

    Low-power Secret-key Agreement over OFDM

    Get PDF
    Information-theoretic secret-key agreement is perhaps the most practically feasible mechanism that provides unconditional security at the physical layer to date. In this paper, we consider the problem of secret-key agreement by sharing randomness at low power over an orthogonal frequency division multiplexing (OFDM) link, in the presence of an eavesdropper. The low power assumption greatly simplifies the design of the randomness sharing scheme, even in a fading channel scenario. We assess the performance of the proposed system in terms of secrecy key rate and show that a practical approach to key sharing is obtained by using low-density parity check (LDPC) codes for information reconciliation. Numerical results confirm the merits of the proposed approach as a feasible and practical solution. Moreover, the outage formulation allows to implement secret-key agreement even when only statistical knowledge of the eavesdropper channel is available.Comment: 9 pages, 4 figures; this is the authors prepared version of the paper with the same name accepted for HotWiSec 2013, the Second ACM Workshop on Hot Topics on Wireless Network Security and Privacy, Budapest, Hungary 17-19 April 201
    • …
    corecore