1,195 research outputs found

    Bits About the Channel: Multi-round Protocols for Two-way Fading Channels

    Full text link
    Most communication systems use some form of feedback, often related to channel state information. In this paper, we study diversity multiplexing tradeoff for both FDD and TDD systems, when both receiver and transmitter knowledge about the channel is noisy and potentially mismatched. For FDD systems, we first extend the achievable tradeoff region for 1.5 rounds of message passing to get higher diversity compared to the best known scheme, in the regime of higher multiplexing gains. We then break the mold of all current channel state based protocols by using multiple rounds of conferencing to extract more bits about the actual channel. This iterative refinement of the channel increases the diversity order with every round of communication. The protocols are on-demand in nature, using high powers for training and feedback only when the channel is in poor states. The key result is that the diversity multiplexing tradeoff with perfect training and K levels of perfect feedback can be achieved, even when there are errors in training the receiver and errors in the feedback link, with a multi-round protocol which has K rounds of training and K-1 rounds of binary feedback. The above result can be viewed as a generalization of Zheng and Tse, and Aggarwal and Sabharwal, where the result was shown to hold for K=1 and K=2 respectively. For TDD systems, we also develop new achievable strategies with multiple rounds of communication between the transmitter and the receiver, which use the reciprocity of the forward and the feedback channel. The multi-round TDD protocol achieves a diversity-multiplexing tradeoff which uniformly dominates its FDD counterparts, where no channel reciprocity is available.Comment: Submitted to IEEE Transactions on Information Theor

    Optimal space-time codes for the MIMO amplify-and-forward cooperative channel

    Full text link
    In this work, we extend the non-orthogonal amplify-and-forward (NAF) cooperative diversity scheme to the MIMO channel. A family of space-time block codes for a half-duplex MIMO NAF fading cooperative channel with N relays is constructed. The code construction is based on the non-vanishing determinant criterion (NVD) and is shown to achieve the optimal diversity-multiplexing tradeoff (DMT) of the channel. We provide a general explicit algebraic construction, followed by some examples. In particular, in the single relay case, it is proved that the Golden code and the 4x4 Perfect code are optimal for the single-antenna and two-antenna case, respectively. Simulation results reveal that a significant gain (up to 10dB) can be obtained with the proposed codes, especially in the single-antenna case.Comment: submitted to IEEE Transactions on Information Theory, revised versio

    Diversity-Multiplexing Tradeoff of Asynchronous Cooperative Diversity in Wireless Networks

    Full text link
    Synchronization of relay nodes is an important and critical issue in exploiting cooperative diversity in wireless networks. In this paper, two asynchronous cooperative diversity schemes are proposed, namely, distributed delay diversity and asynchronous space-time coded cooperative diversity schemes. In terms of the overall diversity-multiplexing (DM) tradeoff function, we show that the proposed independent coding based distributed delay diversity and asynchronous space-time coded cooperative diversity schemes achieve the same performance as the synchronous space-time coded approach which requires an accurate symbol-level timing synchronization to ensure signals arriving at the destination from different relay nodes are perfectly synchronized. This demonstrates diversity order is maintained even at the presence of asynchronism between relay node. Moreover, when all relay nodes succeed in decoding the source information, the asynchronous space-time coded approach is capable of achieving better DM-tradeoff than synchronous schemes and performs equivalently to transmitting information through a parallel fading channel as far as the DM-tradeoff is concerned. Our results suggest the benefits of fully exploiting the space-time degrees of freedom in multiple antenna systems by employing asynchronous space-time codes even in a frequency flat fading channel. In addition, it is shown asynchronous space-time coded systems are able to achieve higher mutual information than synchronous space-time coded systems for any finite signal-to-noise-ratio (SNR) when properly selected baseband waveforms are employed

    On the DMT of TDD-SIMO Systems with Channel-Dependent Reverse Channel Training

    Full text link
    This paper investigates the Diversity-Multiplexing gain Trade-off (DMT) of a training based reciprocal Single Input Multiple Output (SIMO) system, with (i) perfect Channel State Information (CSI) at the Receiver (CSIR) and noisy CSI at the Transmitter (CSIT), and (ii) noisy CSIR and noisy CSIT. In both the cases, the CSIT is acquired through Reverse Channel Training (RCT), i.e., by sending a training sequence from the receiver to the transmitter. A channel-dependent fixed-power training scheme is proposed for acquiring CSIT, along with a forward-link data transmit power control scheme. With perfect CSIR, the proposed scheme is shown to achieve a diversity order that is quadratically increasing with the number of receive antennas. This is in contrast with conventional orthogonal RCT schemes, where the diversity order is known to saturate as the number of receive antennas is increased, for a given channel coherence time. Moreover, the proposed scheme can achieve a larger DMT compared to the orthogonal training scheme. With noisy CSIR and noisy CSIT, a three-way training scheme is proposed and its DMT performance is analyzed. It is shown that nearly the same diversity order is achievable as in the perfect CSIR case. The time-overhead in the training schemes is explicitly accounted for in this work, and the results show that the proposed channel-dependent RCT and data power control schemes offer a significant improvement in terms of the DMT, compared to channel-agnostic orthogonal RCT schemes. The outage performance of the proposed scheme is illustrated through Monte-Carlo simulations.Comment: Accepted for publication in IEEE Transactions on Communication

    Asymptotically optimal cooperative wireless networks with reduced signaling complexity

    Get PDF
    This paper considers an orthogonal amplify-and-forward (OAF) protocol for cooperative relay communication over Rayleigh-fading channels in which the intermediate relays are permitted to linearly transform the received signal and where the source and relays transmit for equal time durations. The diversity-multiplexing gain (D-MG) tradeoff of the equivalent space-time channel associated to this protocol is determined and a cyclic-division-algebra-based D-MG optimal code constructed. The transmission or signaling alphabet of this code is the union of the QAM constellation and a rotated version of QAM. The size of this signaling alphabet is small in comparison with prior D-MG optimal constructions in the literature and is independent of the number of participating nodes in the network
    • …
    corecore