30,023 research outputs found

    Diversity versus Channel Knowledge at Finite Block-Length

    Get PDF
    We study the maximal achievable rate R*(n, ∈) for a given block-length n and block error probability o over Rayleigh block-fading channels in the noncoherent setting and in the finite block-length regime. Our results show that for a given block-length and error probability, R*(n, ∈) is not monotonic in the channel's coherence time, but there exists a rate maximizing coherence time that optimally trades between diversity and cost of estimating the channel.Seventh Framework Programme (European Commission) ((FP7/2007-2013) under grant agreement No. 252663

    Diversity versus Multiplexing at Finite Blocklength

    Full text link
    A finite blocklenth analysis of the diversity-multiplexing tradeoff is presented, based on nonasymptotic bounds on the maximum channel coding rate of multiple-antenna block-memoryless Rayleigh-fading channels.The bounds in this paper allow one to numerically assess for which packet size, number of antennas, and degree of channel selectivity, diversity-exploiting schemes are close to optimal, and when instead the available spatial degrees of freedom should be used to provide spatial multiplexing. This finite blocklength view on the diversity-multiplexing tradeoff provides insights on the design of delay-sensitive ultra-reliable communication links.Comment: Proc. IEEE Int. Symp. Wirel. Comm. Syst. (ISWCS), Aug. 2014, to appea

    Low-Latency Short-Packet Transmissions: Fixed Length or HARQ?

    Get PDF
    We study short-packet communications, subject to latency and reliability constraints, under the premises of limited frequency diversity and no time diversity. The question addressed is whether, and when, hybrid automatic repeat request (HARQ) outperforms fixed-blocklength schemes with no feedback (FBL-NF) in such a setting. We derive an achievability bound for HARQ, under the assumption of a limited number of transmissions. The bound relies on pilot-assisted transmission to estimate the fading channel and scaled nearest-neighbor decoding at the receiver. We compare our achievability bound for HARQ to stateof-the-art achievability bounds for FBL-NF communications and show that for a given latency, reliability, number of information bits, and number of diversity branches, HARQ may significantly outperform FBL-NF. For example, for an average latency of 1 ms, a target error probability of 10^-3, 30 information bits, and 3 diversity branches, the gain in energy per bit is about 4 dB.Comment: 6 pages, 5 figures, accepted to GLOBECOM 201

    Elements of Cellular Blind Interference Alignment --- Aligned Frequency Reuse, Wireless Index Coding and Interference Diversity

    Full text link
    We explore degrees of freedom (DoF) characterizations of partially connected wireless networks, especially cellular networks, with no channel state information at the transmitters. Specifically, we introduce three fundamental elements --- aligned frequency reuse, wireless index coding and interference diversity --- through a series of examples, focusing first on infinite regular arrays, then on finite clusters with arbitrary connectivity and message sets, and finally on heterogeneous settings with asymmetric multiple antenna configurations. Aligned frequency reuse refers to the optimality of orthogonal resource allocations in many cases, but according to unconventional reuse patterns that are guided by interference alignment principles. Wireless index coding highlights both the intimate connection between the index coding problem and cellular blind interference alignment, as well as the added complexity inherent to wireless settings. Interference diversity refers to the observation that in a wireless network each receiver experiences a different set of interferers, and depending on the actions of its own set of interferers, the interference-free signal space at each receiver fluctuates differently from other receivers, creating opportunities for robust applications of blind interference alignment principles

    Peak-Age Violation Guarantees for the Transmission of Short Packets over Fading Channels

    Get PDF
    We investigate the probability that the peak age of information in a point-to-point communication system operating over a multiantenna wireless fading channel exceeds a predetermined value. The packets are scheduled according to a last-come first-serve policy with preemption in service, and are transmitted over the channel using a simple automatic repetition request protocol. We consider quadrature phase shift keying modulation, pilot-assisted transmission, maximum-likelihood channel estimation, and mismatched scaled nearest-neighbor decoding. Our analysis, which exploits nonasymptotic tools in information theory, allows one to determine, for a given information packet size, the physical layer parameters such as the SNR, the number of transmit and receive antennas, the amount of frequency diversity to exploit, and the number of pilot symbols, to ensure that the system operates below a target peak-age violation probability.Comment: 6 pages, 6 figures. To be presented at Infocom 201

    Scheduling of Multicast and Unicast Services under Limited Feedback by using Rateless Codes

    Full text link
    Many opportunistic scheduling techniques are impractical because they require accurate channel state information (CSI) at the transmitter. In this paper, we investigate the scheduling of unicast and multicast services in a downlink network with a very limited amount of feedback information. Specifically, unicast users send imperfect (or no) CSI and infrequent acknowledgements (ACKs) to a base station, and multicast users only report infrequent ACKs to avoid feedback implosion. We consider the use of physical-layer rateless codes, which not only combats channel uncertainty, but also reduces the overhead of ACK feedback. A joint scheduling and power allocation scheme is developed to realize multiuser diversity gain for unicast service and multicast gain for multicast service. We prove that our scheme achieves a near-optimal throughput region. Our simulation results show that our scheme significantly improves the network throughput over schemes employing fixed-rate codes or using only unicast communications
    • …
    corecore