13,922 research outputs found

    Population Genetic Structuring in Opisthorchis viverrini over Various Spatial Scales in Thailand and Lao PDR

    Get PDF
    Khon Kaen Province in northeast Thailand is known as a hot spot for opisthorchiasis in Southeast Asia. Preliminary allozyme and mitochondrial DNA haplotype data from within one endemic district in this Province (Ban Phai), indicated substantial genetic variability within Opisthorchis viverrini. Here, we used microsatellite DNA analyses to examine the genetic diversity and population structure of O. viverrini from four geographically close localities in Khon Kaen Province. Genotyping based on 12 microsatellite loci yielded a mean number of alleles per locus that ranged from 2.83 to 3.7 with an expected heterozygosity in Hardy-Weinberg equilibrium of 0.44-0.56. Assessment of population structure by pairwise F(ST) analysis showed inter-population differentiation (P<0.05) which indicates population substructuring between these localities. Unique alleles were found in three of four localities with the highest number observed per locality being three. Our results highlight the existence of genetic diversity and population substructuring in O. viverrini over a small spatial scale which is similar to that found at a larger scale. This provides the basis for the investigation of the role of parasite genetic diversity and differentiation in transmission dynamics and control of O. viverrini

    Colonization of malaria vectors under semi-field conditions as a strategy for maintaining genetic and phenotypic similarity with wild populations

    Get PDF
    Background Malaria still accounts for an estimated 207 million cases and 627,000 deaths worldwide each year. One proposed approach to complement existing malaria control methods is the release of genetically-modified (GM) and/or sterile male mosquitoes. As opposed to laboratory colonization, this requires realistic semi field systems to produce males that can compete for females in nature. This study investigated whether the establishment of a colony of the vector Anopheles arabiensis under more natural semi-field conditions can maintain higher levels of genetic diversity than achieved by laboratory colonization using traditional methods.&lt;p&gt;&lt;/p&gt; Methods Wild females of the African malaria vector An. arabiensis were collected from a village in southern Tanzania and used to establish new colonies under different conditions at the Ifakara Health Institute. Levels of genetic diversity and inbreeding were monitored in colonies of An. arabiensis that were simultaneously established in small cage colonies in the SFS and in a large semi-field (SFS) cage and compared with that observed in the original founder population. Phenotypic traits that determine their fitness (body size and energetic reserves) were measured at 10th generation and compared to founder wild population.&lt;p&gt;&lt;/p&gt; Results In contrast to small cage colonies, the SFS population of An. arabiensis exhibited a higher degree of similarity to the founding field population through time in several ways: (i) the SFS colony maintained a significantly higher level of genetic variation than small cage colonies, (ii) the SFS colony had a lower degree of inbreeding than small cage colonies, and (iii) the mean and range of mosquito body size in the SFS colony was closer to that of the founding wild population than that of small cage colonies. Small cage colonies had significantly lower lipids and higher glycogen abundances than SFS and wild population.&lt;p&gt;&lt;/p&gt; Conclusions Colonization of An. arabiensis under semi-field conditions was associated with the retention of a higher degree of genetic diversity, reduced inbreeding and greater phenotypic similarity to the founding wild population than observed in small cage colonies. Thus, mosquitoes from such semi-field populations are expected to provide more realistic representation of mosquito ecology and physiology than those from small cage colonies.&lt;p&gt;&lt;/p&gt

    Gene surfing

    Get PDF
    Spatially resolved genetic data is increasingly used to reconstruct the migrational history of species. To assist such inference, we study, by means of simulations and analytical methods, the dynamics of neutral gene frequencies in a population undergoing a continual range expansion in one dimension. During such a colonization period, lineages can fix at the wave front by means of a ``surfing'' mechanism [Edmonds C.A., Lillie A.S. & Cavalli-Sforza L.L. (2004) Proc Natl Acad Sci USA 101: 975-979]. We quantify this phenomenon in terms of (i) the spatial distribution of lineages that reach fixation and, closely related, (ii) the continual loss of genetic diversity (heterozygosity) at the wave front, characterizing the approach to fixation. Our simulations show that an effective population size can be assigned to the wave that controls the (observable) gradient in heterozygosity left behind the colonization process. This effective population size is markedly higher in pushed waves than in pulled waves, and increases only sub-linearly with deme size. To explain these and other findings, we develop a versatile analytical approach, based on the physics of reaction-diffusion systems, that yields simple predictions for any deterministic population dynamics

    Growth, competition and cooperation in spatial population genetics

    Get PDF
    We study an individual based model describing competition in space between two different alleles. Although the model is similar in spirit to classic models of spatial population genetics such as the stepping stone model, here however space is continuous and the total density of competing individuals fluctuates due to demographic stochasticity. By means of analytics and numerical simulations, we study the behavior of fixation probabilities, fixation times, and heterozygosity, in a neutral setting and in cases where the two species can compete or cooperate. By concluding with examples in which individuals are transported by fluid flows, we argue that this model is a natural choice to describe competition in marine environments.Comment: 29 pages, 14 figures; revised version including a section with results in the presence of fluid flow

    Dynamics of genetic variability in Anastrepha fraterculus (Diptera: Tephritidae) during adaptation to laboratory rearing conditions

    Get PDF
    BACKGROUND: Anastrepha fraterculus is one of the most important fruit fly plagues in the American continent and only chemical control is applied in the field to diminish its population densities. A better understanding of the genetic variability during the introduction and adaptation of wild A. fraterculus populations to laboratory conditions is required for the development of stable and vigorous experimental colonies and mass-reared strains in support of successful Sterile Insect Technique (SIT) efforts. METHODS: The present study aims to analyze the dynamics of changes in genetic variability during the first six generations under artificial rearing conditions in two populations: a) a wild population recently introduced to laboratory culture, named TW and, b) a long-established control line, named CL. RESULTS: Results showed a declining tendency of genetic variability in TW. In CL, the relatively high values of genetic variability appear to be maintained across generations and could denote an intrinsic capacity to avoid the loss of genetic diversity in time. DISCUSSION: The impact of evolutionary forces on this species during the adaptation process as well as the best approach to choose strategies to introduce experimental and mass-reared A. fraterculus strains for SIT programs are discussed.Fil: Scannapieco, Alejandra Carla. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Scannapieco, Alejandra Carla. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Remis, Maria Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Genética de la Estructura Poblacional; ArgentinaFil: Juri, Marianela Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; ArgentinaFil: Vera, María Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia. Cátedra Terapéutica Vegetal; ArgentinaFil: Segura, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; ArgentinaFil: Cladera, Jorge Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; ArgentinaFil: Lanzavecchia, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; Argentin

    Digging for gold nuggets : uncovering novel candidate genes for variation in gastrointestinal nematode burden in a wild bird species

    Get PDF
    Acknowledgements This study was funded by a BBSRC studentship (MAWenzel) and NERC grants NE/H00775X/1 and NE/D000602/1 (SB Piertney). The authors are grateful to Marianne James, Mario Roder and Keliya Bai for field-work assistance, Lucy M.I. Webster and Steve Paterson for help during prior development of genetic markers,Heather Ritchie for helpful comments on manuscript drafts and all estate owners, factors and keepers for access to field sites, most particularly MJ Taylor and Mike Nisbet (Airlie), Neil Brown (Allargue), RR Gledson and David Scrimgeour (Delnadamph), Andrew Salvesen and John Hay (Dinnet), Stuart Young and Derek Calder (Edinglassie), Kirsty Donald and DavidBusfield (Glen Dye), Neil Hogbin and Ab Taylor (Glen Muick), Alistair Mitchell (Glenlivet), Simon Blackett, Jim Davidson and Liam Donald (Invercauld), Richard Cooke and Fred Taylor (Invermark), Shaila Rao and Christopher Murphy (Mar Lodge), and Ralph Peters and Philip Astor (Tillypronie)Peer reviewedPostprin
    • …
    corecore