3,388 research outputs found

    Back to the Future: Logic and Machine Learning

    Get PDF
    In this paper we argue that since the beginning of the natural language processing or computational linguistics there has been a strong connection between logic and machine learning. First of all, there is something logical about language or linguistic about logic. Secondly, we argue that rather than distinguishing between logic and machine learning, a more useful distinction is between top-down approaches and data-driven approaches. Examining some recent approaches in deep learning we argue that they incorporate both properties and this is the reason for their very successful adoption to solve several problems within language technology

    Automatic Quality Estimation for ASR System Combination

    Get PDF
    Recognizer Output Voting Error Reduction (ROVER) has been widely used for system combination in automatic speech recognition (ASR). In order to select the most appropriate words to insert at each position in the output transcriptions, some ROVER extensions rely on critical information such as confidence scores and other ASR decoder features. This information, which is not always available, highly depends on the decoding process and sometimes tends to over estimate the real quality of the recognized words. In this paper we propose a novel variant of ROVER that takes advantage of ASR quality estimation (QE) for ranking the transcriptions at "segment level" instead of: i) relying on confidence scores, or ii) feeding ROVER with randomly ordered hypotheses. We first introduce an effective set of features to compensate for the absence of ASR decoder information. Then, we apply QE techniques to perform accurate hypothesis ranking at segment-level before starting the fusion process. The evaluation is carried out on two different tasks, in which we respectively combine hypotheses coming from independent ASR systems and multi-microphone recordings. In both tasks, it is assumed that the ASR decoder information is not available. The proposed approach significantly outperforms standard ROVER and it is competitive with two strong oracles that e xploit prior knowledge about the real quality of the hypotheses to be combined. Compared to standard ROVER, the abs olute WER improvements in the two evaluation scenarios range from 0.5% to 7.3%

    Integrating Automatic Transcription into the Language Documentation Workflow: Experiments with Na Data and the Persephone Toolkit

    Get PDF
    Automatic speech recognition tools have potential for facilitating language documentation, but in practice these tools remain little-used by linguists for a variety of reasons, such as that the technology is still new (and evolving rapidly), user-friendly interfaces are still under development, and case studies demonstrating the practical usefulness of automatic recognition in a low-resource setting remain few. This article reports on a success story in integrating automatic transcription into the language documentation workflow, specifically for Yongning Na, a language of Southwest China. Using Persephone, an open-source toolkit, a single-speaker speech transcription tool was trained over five hours of manually transcribed speech. The experiments found that this method can achieve a remarkably low error rate (on the order of 17%), and that automatic transcriptions were useful as a canvas for the linguist. The present report is intended for linguists with little or no knowledge of speech processing. It aims to provide insights into (i) the way the tool operates and (ii) the process of collaborating with natural language processing specialists. Practical recommendations are offered on how to anticipate the requirements of this type of technology from the early stages of data collection in the field.National Foreign Language Resource Cente

    Supporting language diversity of European MOOCs with the EMMA platform

    Get PDF
    This paper introduces the cross-language support of the EMMA MOOC platform. Based on a discussion of language diversity in Europe we introduce the development and evaluation of automated translation of texts and subtitling of videos from Dutch into English. The development of an Automatic Speech Recognition (ASR) system and a Statistical Machine Translation (SMT) system is described. The resources employed and evaluation approach is introduced. Initial evaluation results are presented. Finally, we provide an outlook into future research and development.This work is partially funded by the EU under the Competitiveness and Innovation Framework Program 2007- 2017 (CIP) in the European Multiple MOOC Aggregator (EMMA) project. Grant Agreement no. 621030

    CAPT๋ฅผ ์œ„ํ•œ ๋ฐœ์Œ ๋ณ€์ด ๋ถ„์„ ๋ฐ CycleGAN ๊ธฐ๋ฐ˜ ํ”ผ๋“œ๋ฐฑ ์ƒ์„ฑ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ธ๋ฌธ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ์ธ์ง€๊ณผํ•™์ „๊ณต,2020. 2. ์ •๋ฏผํ™”.Despite the growing popularity in learning Korean as a foreign language and the rapid development in language learning applications, the existing computer-assisted pronunciation training (CAPT) systems in Korean do not utilize linguistic characteristics of non-native Korean speech. Pronunciation variations in non-native speech are far more diverse than those observed in native speech, which may pose a difficulty in combining such knowledge in an automatic system. Moreover, most of the existing methods rely on feature extraction results from signal processing, prosodic analysis, and natural language processing techniques. Such methods entail limitations since they necessarily depend on finding the right features for the task and the extraction accuracies. This thesis presents a new approach for corrective feedback generation in a CAPT system, in which pronunciation variation patterns and linguistic correlates with accentedness are analyzed and combined with a deep neural network approach, so that feature engineering efforts are minimized while maintaining the linguistically important factors for the corrective feedback generation task. Investigations on non-native Korean speech characteristics in contrast with those of native speakers, and their correlation with accentedness judgement show that both segmental and prosodic variations are important factors in a Korean CAPT system. The present thesis argues that the feedback generation task can be interpreted as a style transfer problem, and proposes to evaluate the idea using generative adversarial network. A corrective feedback generation model is trained on 65,100 read utterances by 217 non-native speakers of 27 mother tongue backgrounds. The features are automatically learnt in an unsupervised way in an auxiliary classifier CycleGAN setting, in which the generator learns to map a foreign accented speech to native speech distributions. In order to inject linguistic knowledge into the network, an auxiliary classifier is trained so that the feedback also identifies the linguistic error types that were defined in the first half of the thesis. The proposed approach generates a corrected version the speech using the learners own voice, outperforming the conventional Pitch-Synchronous Overlap-and-Add method.์™ธ๊ตญ์–ด๋กœ์„œ์˜ ํ•œ๊ตญ์–ด ๊ต์œก์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๊ณ ์กฐ๋˜์–ด ํ•œ๊ตญ์–ด ํ•™์Šต์ž์˜ ์ˆ˜๊ฐ€ ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์Œ์„ฑ์–ธ์–ด์ฒ˜๋ฆฌ ๊ธฐ์ˆ ์„ ์ ์šฉํ•œ ์ปดํ“จํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐœ์Œ ๊ต์œก(Computer-Assisted Pronunciation Training; CAPT) ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ๋˜ํ•œ ์ ๊ทน์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํ˜„์กดํ•˜๋Š” ํ•œ๊ตญ์–ด ๋งํ•˜๊ธฐ ๊ต์œก ์‹œ์Šคํ…œ์€ ์™ธ๊ตญ์ธ์˜ ํ•œ๊ตญ์–ด์— ๋Œ€ํ•œ ์–ธ์–ดํ•™์  ํŠน์ง•์„ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜์ง€ ์•Š๊ณ  ์žˆ์œผ๋ฉฐ, ์ตœ์‹  ์–ธ์–ด์ฒ˜๋ฆฌ ๊ธฐ์ˆ  ๋˜ํ•œ ์ ์šฉ๋˜์ง€ ์•Š๊ณ  ์žˆ๋Š” ์‹ค์ •์ด๋‹ค. ๊ฐ€๋Šฅํ•œ ์›์ธ์œผ๋กœ์จ๋Š” ์™ธ๊ตญ์ธ ๋ฐœํ™” ํ•œ๊ตญ์–ด ํ˜„์ƒ์— ๋Œ€ํ•œ ๋ถ„์„์ด ์ถฉ๋ถ„ํ•˜๊ฒŒ ์ด๋ฃจ์–ด์ง€์ง€ ์•Š์•˜๋‹ค๋Š” ์ , ๊ทธ๋ฆฌ๊ณ  ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ์žˆ์–ด๋„ ์ด๋ฅผ ์ž๋™ํ™”๋œ ์‹œ์Šคํ…œ์— ๋ฐ˜์˜ํ•˜๊ธฐ์—๋Š” ๊ณ ๋„ํ™”๋œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค๋Š” ์ ์ด ์žˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ CAPT ๊ธฐ์ˆ  ์ „๋ฐ˜์ ์œผ๋กœ๋Š” ์‹ ํ˜ธ์ฒ˜๋ฆฌ, ์šด์œจ ๋ถ„์„, ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•๊ณผ ๊ฐ™์€ ํŠน์ง• ์ถ”์ถœ์— ์˜์กดํ•˜๊ณ  ์žˆ์–ด์„œ ์ ํ•ฉํ•œ ํŠน์ง•์„ ์ฐพ๊ณ  ์ด๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์ถ”์ถœํ•˜๋Š” ๋ฐ์— ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ๋…ธ๋ ฅ์ด ํ•„์š”ํ•œ ์‹ค์ •์ด๋‹ค. ์ด๋Š” ์ตœ์‹  ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์–ธ์–ด์ฒ˜๋ฆฌ ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•จ์œผ๋กœ์จ ์ด ๊ณผ์ • ๋˜ํ•œ ๋ฐœ์ „์˜ ์—ฌ์ง€๊ฐ€ ๋งŽ๋‹ค๋Š” ๋ฐ”๋ฅผ ์‹œ์‚ฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๋จผ์ € CAPT ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์— ์žˆ์–ด ๋ฐœ์Œ ๋ณ€์ด ์–‘์ƒ๊ณผ ์–ธ์–ดํ•™์  ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์™ธ๊ตญ์ธ ํ™”์ž๋“ค์˜ ๋‚ญ๋…์ฒด ๋ณ€์ด ์–‘์ƒ๊ณผ ํ•œ๊ตญ์–ด ์›์–ด๋ฏผ ํ™”์ž๋“ค์˜ ๋‚ญ๋…์ฒด ๋ณ€์ด ์–‘์ƒ์„ ๋Œ€์กฐํ•˜๊ณ  ์ฃผ์š”ํ•œ ๋ณ€์ด๋ฅผ ํ™•์ธํ•œ ํ›„, ์ƒ๊ด€๊ด€๊ณ„ ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ์˜์‚ฌ์†Œํ†ต์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ค‘์š”๋„๋ฅผ ํŒŒ์•…ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ข…์„ฑ ์‚ญ์ œ์™€ 3์ค‘ ๋Œ€๋ฆฝ์˜ ํ˜ผ๋™, ์ดˆ๋ถ„์ ˆ ๊ด€๋ จ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•  ๊ฒฝ์šฐ ํ”ผ๋“œ๋ฐฑ ์ƒ์„ฑ์— ์šฐ์„ ์ ์œผ๋กœ ๋ฐ˜์˜ํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ๊ต์ •๋œ ํ”ผ๋“œ๋ฐฑ์„ ์ž๋™์œผ๋กœ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์€ CAPT ์‹œ์Šคํ…œ์˜ ์ค‘์š”ํ•œ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด ๊ณผ์ œ๊ฐ€ ๋ฐœํ™”์˜ ์Šคํƒ€์ผ ๋ณ€ํ™”์˜ ๋ฌธ์ œ๋กœ ํ•ด์„์ด ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ๋ณด์•˜์œผ๋ฉฐ, ์ƒ์„ฑ์  ์ ๋Œ€ ์‹ ๊ฒฝ๋ง (Cycle-consistent Generative Adversarial Network; CycleGAN) ๊ตฌ์กฐ์—์„œ ๋ชจ๋ธ๋งํ•˜๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. GAN ๋„คํŠธ์›Œํฌ์˜ ์ƒ์„ฑ๋ชจ๋ธ์€ ๋น„์›์–ด๋ฏผ ๋ฐœํ™”์˜ ๋ถ„ํฌ์™€ ์›์–ด๋ฏผ ๋ฐœํ™” ๋ถ„ํฌ์˜ ๋งคํ•‘์„ ํ•™์Šตํ•˜๋ฉฐ, Cycle consistency ์†์‹คํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๋ฐœํ™”๊ฐ„ ์ „๋ฐ˜์ ์ธ ๊ตฌ์กฐ๋ฅผ ์œ ์ง€ํ•จ๊ณผ ๋™์‹œ์— ๊ณผ๋„ํ•œ ๊ต์ •์„ ๋ฐฉ์ง€ํ•˜์˜€๋‹ค. ๋ณ„๋„์˜ ํŠน์ง• ์ถ”์ถœ ๊ณผ์ •์ด ์—†์ด ํ•„์š”ํ•œ ํŠน์ง•๋“ค์ด CycleGAN ํ”„๋ ˆ์ž„์›Œํฌ์—์„œ ๋ฌด๊ฐ๋… ๋ฐฉ๋ฒ•์œผ๋กœ ์Šค์Šค๋กœ ํ•™์Šต๋˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, ์–ธ์–ด ํ™•์žฅ์ด ์šฉ์ดํ•œ ๋ฐฉ๋ฒ•์ด๋‹ค. ์–ธ์–ดํ•™์  ๋ถ„์„์—์„œ ๋“œ๋Ÿฌ๋‚œ ์ฃผ์š”ํ•œ ๋ณ€์ด๋“ค ๊ฐ„์˜ ์šฐ์„ ์ˆœ์œ„๋Š” Auxiliary Classifier CycleGAN ๊ตฌ์กฐ์—์„œ ๋ชจ๋ธ๋งํ•˜๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด์˜ CycleGAN์— ์ง€์‹์„ ์ ‘๋ชฉ์‹œ์ผœ ํ”ผ๋“œ๋ฐฑ ์Œ์„ฑ์„ ์ƒ์„ฑํ•จ๊ณผ ๋™์‹œ์— ํ•ด๋‹น ํ”ผ๋“œ๋ฐฑ์ด ์–ด๋–ค ์œ ํ˜•์˜ ์˜ค๋ฅ˜์ธ์ง€ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด๋Š” ๋„๋ฉ”์ธ ์ง€์‹์ด ๊ต์ • ํ”ผ๋“œ๋ฐฑ ์ƒ์„ฑ ๋‹จ๊ณ„๊นŒ์ง€ ์œ ์ง€๋˜๊ณ  ํ†ต์ œ๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค๋Š” ๋ฐ์— ๊ทธ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด์„œ 27๊ฐœ์˜ ๋ชจ๊ตญ์–ด๋ฅผ ๊ฐ–๋Š” 217๋ช…์˜ ์œ ์˜๋ฏธ ์–ดํœ˜ ๋ฐœํ™” 65,100๊ฐœ๋กœ ํ”ผ๋“œ๋ฐฑ ์ž๋™ ์ƒ์„ฑ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ , ๊ฐœ์„  ์—ฌ๋ถ€ ๋ฐ ์ •๋„์— ๋Œ€ํ•œ ์ง€๊ฐ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€์„ ๋•Œ ํ•™์Šต์ž ๋ณธ์ธ์˜ ๋ชฉ์†Œ๋ฆฌ๋ฅผ ์œ ์ง€ํ•œ ์ฑ„ ๊ต์ •๋œ ๋ฐœ์Œ์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•์ธ ์Œ๋†’์ด ๋™๊ธฐ์‹ ์ค‘์ฒฉ๊ฐ€์‚ฐ (Pitch-Synchronous Overlap-and-Add) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋น„ํ•ด ์ƒ๋Œ€ ๊ฐœ์„ ๋ฅ  16.67%์ด ํ™•์ธ๋˜์—ˆ๋‹ค.Chapter 1. Introduction 1 1.1. Motivation 1 1.1.1. An Overview of CAPT Systems 3 1.1.2. Survey of existing Korean CAPT Systems 5 1.2. Problem Statement 7 1.3. Thesis Structure 7 Chapter 2. Pronunciation Analysis of Korean Produced by Chinese 9 2.1. Comparison between Korean and Chinese 11 2.1.1. Phonetic and Syllable Structure Comparisons 11 2.1.2. Phonological Comparisons 14 2.2. Related Works 16 2.3. Proposed Analysis Method 19 2.3.1. Corpus 19 2.3.2. Transcribers and Agreement Rates 22 2.4. Salient Pronunciation Variations 22 2.4.1. Segmental Variation Patterns 22 2.4.1.1. Discussions 25 2.4.2. Phonological Variation Patterns 26 2.4.1.2. Discussions 27 2.5. Summary 29 Chapter 3. Correlation Analysis of Pronunciation Variations and Human Evaluation 30 3.1. Related Works 31 3.1.1. Criteria used in L2 Speech 31 3.1.2. Criteria used in L2 Korean Speech 32 3.2. Proposed Human Evaluation Method 36 3.2.1. Reading Prompt Design 36 3.2.2. Evaluation Criteria Design 37 3.2.3. Raters and Agreement Rates 40 3.3. Linguistic Factors Affecting L2 Korean Accentedness 41 3.3.1. Pearsons Correlation Analysis 41 3.3.2. Discussions 42 3.3.3. Implications for Automatic Feedback Generation 44 3.4. Summary 45 Chapter 4. Corrective Feedback Generation for CAPT 46 4.1. Related Works 46 4.1.1. Prosody Transplantation 47 4.1.2. Recent Speech Conversion Methods 49 4.1.3. Evaluation of Corrective Feedback 50 4.2. Proposed Method: Corrective Feedback as a Style Transfer 51 4.2.1. Speech Analysis at Spectral Domain 53 4.2.2. Self-imitative Learning 55 4.2.3. An Analogy: CAPT System and GAN Architecture 57 4.3. Generative Adversarial Networks 59 4.3.1. Conditional GAN 61 4.3.2. CycleGAN 62 4.4. Experiment 63 4.4.1. Corpus 64 4.4.2. Baseline Implementation 65 4.4.3. Adversarial Training Implementation 65 4.4.4. Spectrogram-to-Spectrogram Training 66 4.5. Results and Evaluation 69 4.5.1. Spectrogram Generation Results 69 4.5.2. Perceptual Evaluation 70 4.5.3. Discussions 72 4.6. Summary 74 Chapter 5. Integration of Linguistic Knowledge in an Auxiliary Classifier CycleGAN for Feedback Generation 75 5.1. Linguistic Class Selection 75 5.2. Auxiliary Classifier CycleGAN Design 77 5.3. Experiment and Results 80 5.3.1. Corpus 80 5.3.2. Feature Annotations 81 5.3.3. Experiment Setup 81 5.3.4. Results 82 5.4. Summary 84 Chapter 6. Conclusion 86 6.1. Thesis Results 86 6.2. Thesis Contributions 88 6.3. Recommendations for Future Work 89 Bibliography 91 Appendix 107 Abstract in Korean 117 Acknowledgments 120Docto

    Computer-Based Data Processing and Management for Blackfoot Phonetics and Phonology

    Get PDF
    More than half of the 6000 world languages have never been adequately described. We propose to create a database system to automatically capture and manage interested sound clips in Blackfoot (an endangered language spoken in Alberta, Canada, and Montana) for a phonetic and phonological analysis. Taking Blackfoot speeches as input, the system generates a list of audio clips containing a sequence of sounds or certain accent patterns based on research interests. Existing computational linguistic techniques such as information processing and artificial intelligence are extended to tackle issues specific to Blackfoot linguistics, and database techniques are adopted to support better data management and linguistic queries. This project is innovative because application of technology in Native American phonetics and phonology is underdeveloped. It enhances humanity with the digital framework to document and analyze endangered languages and can also benefit the research in other languages

    Robust Neural Machine Translation

    Full text link
    This thesis aims for general robust Neural Machine Translation (NMT) that is agnostic to the test domain. NMT has achieved high quality on benchmarks with closed datasets such as WMT and NIST but can fail when the translation input contains noise due to, for example, mismatched domains or spelling errors. The standard solution is to apply domain adaptation or data augmentation to build a domain-dependent system. However, in real life, the input noise varies in a wide range of domains and types, which is unknown in the training phase. This thesis introduces five general approaches to improve NMT accuracy and robustness, where three of them are invariant to models, test domains, and noise types. First, we describe a novel unsupervised text normalization framework Lex-Var, to reduce the lexical variations for NMT. Then, we apply the phonetic encoding as auxiliary linguistic information and obtained very significant (5 BLEU point) improvement in translation quality and robustness. Furthermore, we introduce the random clustering encoding method based on our hypothesis of Semantic Diversity by Phonetics and generalizes to all languages. We also discussed two domain adaptation models for the known test domain. Finally, we provide a measurement of translation robustness based on the consistency of translation accuracy among samples and use it to evaluate our other methods. All these approaches are verified with extensive experiments across different languages and achieved significant and consistent improvements in translation quality and robustness over the state-of-the-art NMT
    • โ€ฆ
    corecore