7,905 research outputs found

    Diversity-Multiplexing Tradeoff of Asynchronous Cooperative Diversity in Wireless Networks

    Full text link
    Synchronization of relay nodes is an important and critical issue in exploiting cooperative diversity in wireless networks. In this paper, two asynchronous cooperative diversity schemes are proposed, namely, distributed delay diversity and asynchronous space-time coded cooperative diversity schemes. In terms of the overall diversity-multiplexing (DM) tradeoff function, we show that the proposed independent coding based distributed delay diversity and asynchronous space-time coded cooperative diversity schemes achieve the same performance as the synchronous space-time coded approach which requires an accurate symbol-level timing synchronization to ensure signals arriving at the destination from different relay nodes are perfectly synchronized. This demonstrates diversity order is maintained even at the presence of asynchronism between relay node. Moreover, when all relay nodes succeed in decoding the source information, the asynchronous space-time coded approach is capable of achieving better DM-tradeoff than synchronous schemes and performs equivalently to transmitting information through a parallel fading channel as far as the DM-tradeoff is concerned. Our results suggest the benefits of fully exploiting the space-time degrees of freedom in multiple antenna systems by employing asynchronous space-time codes even in a frequency flat fading channel. In addition, it is shown asynchronous space-time coded systems are able to achieve higher mutual information than synchronous space-time coded systems for any finite signal-to-noise-ratio (SNR) when properly selected baseband waveforms are employed

    Cluster-based cooperative subcarrier sensing using antenna diversity-based weighted data fusion

    Get PDF
    Cooperative spectrum sensing (CSS) is used in cognitive radio (CR) networks to improve the spectrum sensing performance in shadow fading environments. Moreover, clustering in CR networks is used to reduce reporting time and bandwidth overhead during CSS. Thus, cluster-based cooperative spectrum sensing (CBCSS) has manifested satisfactory spectrum sensing results in harsh environments under processing constraints. On the other hand, the antenna diversity of multiple input multiple output CR systems can be exploited to further improve the spectrum sensing performance. This paper presents the CBCSS performance in a CR network which is comprised of single- as well as multiple-antenna CR systems. We give theoretical analysis of CBCSS for orthogonal frequency division multiplexing signal sensing and propose a novel fusion scheme at the fusion center which takes into account the receiver antenna diversity of the CRs present in the network. We introduce the concept of weighted data fusion in which the sensing results of different CRs are weighted proportional to the number of receiving antennas they are equipped with. Thus, the receiver diversity is used to the advantage of improving spectrum sensing performance in a CR cluster. Simulation results show that the proposed scheme outperforms the conventional CBCSS scheme

    Band Limited Signals Observed Over Finite Spatial and Temporal Windows: An Upper Bound to Signal Degrees of Freedom

    Full text link
    The study of degrees of freedom of signals observed within spatially diverse broadband multipath fields is an area of ongoing investigation and has a wide range of applications, including characterising broadband MIMO and cooperative networks. However, a fundamental question arises: given a size limitation on the observation region, what is the upper bound on the degrees of freedom of signals observed within a broadband multipath field over a finite time window? In order to address this question, we characterize the multipath field as a sum of a finite number of orthogonal waveforms or spatial modes. We show that (i) the "effective observation time" is independent of spatial modes and different from actual observation time, (ii) in wideband transmission regimes, the "effective bandwidth" is spatial mode dependent and varies from the given frequency bandwidth. These findings clearly indicate the strong coupling between space and time as well as space and frequency in spatially diverse wideband multipath fields. As a result, signal degrees of freedom does not agree with the well-established degrees of freedom result as a product of spatial degrees of freedom and time-frequency degrees of freedom. Instead, analogous to Shannon's communication model where signals are encoded in only one spatial mode, the available signal degrees of freedom in spatially diverse wideband multipath fields is the time-bandwidth product result extended from one spatial mode to finite modes. We also show that the degrees of freedom is affected by the acceptable signal to noise ratio (SNR) in each spatial mode.Comment: Submitted to IEEE Transactions on Signal Processin

    On Security and Reliability using Cooperative Transmissions in Sensor Networks

    Get PDF
    Recent work on cooperative communications has demonstrated benefits in terms of improving the reliability of links through diversity and/or increasing the reach of a link compared to a single transmitter transmitting to a single receiver (single-input single-output or SISO). In one form of cooperative transmissions, multiple nodes can act as virtual antenna elements and provide such benefits using space-time coding. In a multi-hop sensor network, a source node can make use of its neighbors as relays with itself to reach an intermediate node, which will use its neighbors and so on to reach the destination. For the same reliability of a link as SISO, the number of hops between a source and destination may be reduced using cooperative transmissions. However, the presence of malicious or compromised nodes in the network impacts the use of cooperative transmissions. Using more relays can increase the reach of a link, but if one or more relays are malicious, the transmission may fail. In this paper, we analyze this problem to understand the conditions under which cooperative transmissions may fare better or worse than SISO transmissions
    • …
    corecore