39,453 research outputs found

    A Ranking Distance Based Diversity Measure for Multiple Classifier Systems

    Get PDF
    International audienceMultiple classifier fusion belongs to the decision-level information fusion, which has been widely used in many pattern classification applications, especially when the single classifier is not competent. However, multiple classifier fusion can not assure the improvement of the classification accuracy. The diversity among those classifiers in the multiple classifier system (MCS) is crucial for improving the fused classification accuracy. Various diversity measures for MCS have been proposed, which are mainly based on the average sample-wise classification consistency between different member classifiers. In this paper, we propose to define the diversity between member classifiers from a different standpoint. If different member classifiers in an MCS are good at classifying different classes, i.e., there exist expert-classifiers for each concerned class, the improvement of the accuracy of classifier fusion can be expected. Each classifier has a ranking of classes in term of the classification accuracies, based on which, a new diversity measure is implemented using the ranking distance. A larger average ranking distance represents a higher diversity. The new proposed diversity measure is used together with each single classifier's performance on training samples to design and optimize the MCS. Experiments, simulations , and related analyses are provided to illustrate and validate our new proposed diversity measure

    Analysis of the Correlation Between Majority Voting Error and the Diversity Measures in Multiple Classifier Systems

    Get PDF
    Combining classifiers by majority voting (MV) has recently emerged as an effective way of improving performance of individual classifiers. However, the usefulness of applying MV is not always observed and is subject to distribution of classification outputs in a multiple classifier system (MCS). Evaluation of MV errors (MVE) for all combinations of classifiers in MCS is a complex process of exponential complexity. Reduction of this complexity can be achieved provided the explicit relationship between MVE and any other less complex function operating on classifier outputs is found. Diversity measures operating on binary classification outputs (correct/incorrect) are studied in this paper as potential candidates for such functions. Their correlation with MVE, interpreted as the quality of a measure, is thoroughly investigated using artificial and real-world datasets. Moreover, we propose new diversity measure efficiently exploiting information coming from the whole MCS, rather than its part, for which it is applied

    An Overview of Classifier Fusion Methods

    Get PDF
    A number of classifier fusion methods have been recently developed opening an alternative approach leading to a potential improvement in the classification performance. As there is little theory of information fusion itself, currently we are faced with different methods designed for different problems and producing different results. This paper gives an overview of classifier fusion methods and attempts to identify new trends that may dominate this area of research in future. A taxonomy of fusion methods trying to bring some order into the existing “pudding of diversities” is also provided

    An Overview of Classifier Fusion Methods

    Get PDF
    A number of classifier fusion methods have been recently developed opening an alternative approach leading to a potential improvement in the classification performance. As there is little theory of information fusion itself, currently we are faced with different methods designed for different problems and producing different results. This paper gives an overview of classifier fusion methods and attempts to identify new trends that may dominate this area of research in future. A taxonomy of fusion methods trying to bring some order into the existing “pudding of diversities” is also provided

    Visual Integration of Data and Model Space in Ensemble Learning

    Full text link
    Ensembles of classifier models typically deliver superior performance and can outperform single classifier models given a dataset and classification task at hand. However, the gain in performance comes together with the lack in comprehensibility, posing a challenge to understand how each model affects the classification outputs and where the errors come from. We propose a tight visual integration of the data and the model space for exploring and combining classifier models. We introduce a workflow that builds upon the visual integration and enables the effective exploration of classification outputs and models. We then present a use case in which we start with an ensemble automatically selected by a standard ensemble selection algorithm, and show how we can manipulate models and alternative combinations.Comment: 8 pages, 7 picture
    • …
    corecore