315 research outputs found

    Resource allocation technique for powerline network using a modified shuffled frog-leaping algorithm

    Get PDF
    Resource allocation (RA) techniques should be made efficient and optimized in order to enhance the QoS (power & bit, capacity, scalability) of high-speed networking data applications. This research attempts to further increase the efficiency towards near-optimal performance. RA’s problem involves assignment of subcarriers, power and bit amounts for each user efficiently. Several studies conducted by the Federal Communication Commission have proven that conventional RA approaches are becoming insufficient for rapid demand in networking resulted in spectrum underutilization, low capacity and convergence, also low performance of bit error rate, delay of channel feedback, weak scalability as well as computational complexity make real-time solutions intractable. Mainly due to sophisticated, restrictive constraints, multi-objectives, unfairness, channel noise, also unrealistic when assume perfect channel state is available. The main goal of this work is to develop a conceptual framework and mathematical model for resource allocation using Shuffled Frog-Leap Algorithm (SFLA). Thus, a modified SFLA is introduced and integrated in Orthogonal Frequency Division Multiplexing (OFDM) system. Then SFLA generated random population of solutions (power, bit), the fitness of each solution is calculated and improved for each subcarrier and user. The solution is numerically validated and verified by simulation-based powerline channel. The system performance was compared to similar research works in terms of the system’s capacity, scalability, allocated rate/power, and convergence. The resources allocated are constantly optimized and the capacity obtained is constantly higher as compared to Root-finding, Linear, and Hybrid evolutionary algorithms. The proposed algorithm managed to offer fastest convergence given that the number of iterations required to get to the 0.001% error of the global optimum is 75 compared to 92 in the conventional techniques. Finally, joint allocation models for selection of optima resource values are introduced; adaptive power and bit allocators in OFDM system-based Powerline and using modified SFLA-based TLBO and PSO are propose

    A Modified Shuffled Frog Leaping Algorithm for PAPR Reduction in OFDM Systems

    Full text link
    © 2015 IEEE. Significant reduction of the peak-to-average power ratio (PAPR) is an implementation challenge in orthogonal frequency division multiplexing (OFDM) systems. One way to reduce PAPR is to apply a set of selected partial transmission sequence (PTS) to the transmit signals. However, PTS selection is a highly complex NP-hard problem and the computational complexity is very high when a large number of subcarriers are used in the OFDM system. In this paper, we propose a new heuristic PTS selection method, the modified chaos clonal shuffled frog leaping algorithm (MCCSFLA). MCCSFLA is inspired by natural clonal selection of a frog colony, it is based on the chaos theory. We also analyze MCCSFLA using the Markov chain theory and prove that the algorithm can converge to the global optimum. Simulation results show that the proposed algorithm achieves better PAPR reduction than using others genetic, quantum evolutionary and selective mapping algorithms. Furthermore, the proposed algorithm converges faster than the genetic and quantum evolutionary algorithms

    Solving Travelling Salesman Problem by Using Optimization Algorithms

    Get PDF
    This paper presents the performances of different types of optimization techniques used in artificial intelligence (AI), these are Ant Colony Optimization (ACO), Improved Particle Swarm Optimization with a new operator (IPSO), Shuffled Frog Leaping Algorithms (SFLA) and modified shuffled frog leaping algorithm by using a crossover and mutation operators. They were used to solve the traveling salesman problem (TSP) which is one of the popular and classical route planning problems of research and it is considered  as one of the widely known of combinatorial optimization. Combinatorial optimization problems are usually simple to state but very difficult to solve. ACO, PSO, and SFLA are intelligent meta-heuristic optimization algorithms with strong ability to analyze the optimization problems and find the optimal solution. They were tested on benchmark problems from TSPLIB and the test results were compared with each other.Keywords: Ant colony optimization, shuffled frog leaping algorithms, travelling salesman problem, improved particle swarm optimizatio

    Optimal distribution network reconfiguration using meta-heuristic algorithms

    Get PDF
    Finding optimal configuration of power distribution systems topology is an NP-hard combinatorial optimization problem. It becomes more complex when time varying nature of loads in large-scale distribution systems is taken into account. In the second chapter of this dissertation, a systematic approach is proposed to tackle the computational burden of the procedure. To solve the optimization problem, a novel adaptive fuzzy based parallel genetic algorithm (GA) is proposed that employs the concept of parallel computing in identifying the optimal configuration of the network. The integration of fuzzy logic into GA enhances the efficiency of the parallel GA by adaptively modifying the migration rates between different processors during the optimization process. A computationally efficient graph encoding method based on Dandelion coding strategy is developed which automatically generates radial topologies and prevents the construction of infeasible radial networks during the optimization process. The main shortcoming of the proposed algorithm in Chapter 2 is that it identifies only one single solution. It means that the system operator will not have any option but relying on the found solution. That is why a novel hybrid optimization algorithm is proposed in the third chapter of this dissertation that determines Pareto frontiers, as candidate solutions, for multi-objective distribution network reconfiguration problem. Implementing this model, the system operator will have more flexibility in choosing the best configuration among the alternative solutions. The proposed hybrid optimization algorithm combines the concept of fuzzy Pareto dominance (FPD) with shuffled frog leaping algorithm (SFLA) to recognize non-dominated suboptimal solutions identified by SFLA. The local search step of SFLA is also customized for power systems applications so that it automatically creates and analyzes only the feasible and radial configurations in its optimization procedure which significantly increases the convergence speed of the algorithm. In the fourth chapter, the problem of optimal network reconfiguration is solved for the case in which the system operator is going to employ an optimization algorithm that is automatically modifying its parameters during the optimization process. Defining three fuzzy functions, the probability of crossover and mutation will be adaptively tuned as the algorithm proceeds and the premature convergence will be avoided while the convergence speed of identifying the optimal configuration will not decrease. This modified genetic algorithm is considered a step towards making the parallel GA, presented in the second chapter of this dissertation, more robust in avoiding from getting stuck in local optimums. In the fifth chapter, the concentration will be on finding a potential smart grid solution to more high-quality suboptimal configurations of distribution networks. This chapter is considered an improvement for the third chapter of this dissertation for two reasons: (1) A fuzzy logic is used in the partitioning step of SFLA to improve the proposed optimization algorithm and to yield more accurate classification of frogs. (2) The problem of system reconfiguration is solved considering the presence of distributed generation (DG) units in the network. In order to study the new paradigm of integrating smart grids into power systems, it will be analyzed how the quality of suboptimal solutions can be affected when DG units are continuously added to the distribution network. The heuristic optimization algorithm which is proposed in Chapter 3 and is improved in Chapter 5 is implemented on a smaller case study in Chapter 6 to demonstrate that the identified solution through the optimization process is the same with the optimal solution found by an exhaustive search

    A novel approach for coordinated design of TCSC controller and PSS for improving dynamic stability in power systems

    Get PDF
    The purpose of this article is to present a novel strategy for the coordinated design of the Thyristor Controlled Series Compensator (TCSC) controller and the Power System Stabilizer (PSS). A time domain objective function that is based on an optimization problem has been defined. This objective function takes into account not only the influence that disturbances have on the mechanical power, but also, and this is more accurately the case, the impact that disturbances have on the reference voltage. When the objective function is minimized, potential disturbances are quickly mitigated, and the deviation of the speed of the generator's rotor is limited; as a result, the system's stability is ultimately improved. Particle Swarm Optimization (PSO) and the Shuffled Frog Leaping Algorithm are both components of a composite strategy that is utilized in the process of determining the optimal controller parameters. (SFLA). An independent controller design as well as a collaborative controller design utilizing PSS and TCSC are developed, which enables a direct evaluation of the functions performed by each. The presentation of the eigenvalue analysis and the findings of the nonlinear simulation can help to provide a better understanding of the efficacy of the outcomes. The findings indicate that the coordinated design is able to successfully damp low-frequency oscillations that are caused by a variety of disturbances, such as changes in the mechanical power input and the setting of the reference voltage, and significantly enhance system stability in power systems that are connected weekly

    Efficiency of evolutionary algorithms in water network pipe sizing

    Get PDF
    The pipe sizing of water networks via evolutionary algorithms is of great interest because it allows the selection of alternative economical solutions that meet a set of design requirements. However, available evolutionary methods are numerous, and methodologies to compare the performance of these methods beyond obtaining a minimal solution for a given problem are currently lacking. A methodology to compare algorithms based on an efficiency rate (E) is presented here and applied to the pipe-sizing problem of four medium-sized benchmark networks (Hanoi, New York Tunnel, GoYang and R-9 Joao Pessoa). E numerically determines the performance of a given algorithm while also considering the quality of the obtained solution and the required computational effort. From the wide range of available evolutionary algorithms, four algorithms were selected to implement the methodology: a PseudoGenetic Algorithm (PGA), Particle Swarm Optimization (PSO), a Harmony Search and a modified Shuffled Frog Leaping Algorithm (SFLA). After more than 500,000 simulations, a statistical analysis was performed based on the specific parameters each algorithm requires to operate, and finally, E was analyzed for each network and algorithm. The efficiency measure indicated that PGA is the most efficient algorithm for problems of greater complexity and that HS is the most efficient algorithm for less complex problems. However, the main contribution of this work is that the proposed efficiency ratio provides a neutral strategy to compare optimization algorithms and may be useful in the future to select the most appropriate algorithm for different types of optimization problems

    Efficiency of evolutionary algorithms in water network pipe sizing

    Get PDF
    © 2015, Springer Science+Business Media Dordrecht. The pipe sizing of water networks via evolutionary algorithms is of great interest because it allows the selection of alternative economical solutions that meet a set of design requirements. However, available evolutionary methods are numerous, and methodologies to compare the performance of these methods beyond obtaining a minimal solution for a given problem are currently lacking. A methodology to compare algorithms based on an efficiency rate (E) is presented here and applied to the pipe-sizing problem of four medium-sized benchmark networks (Hanoi, New York Tunnel, GoYang and R-9 Joao Pessoa). E numerically determines the performance of a given algorithm while also considering the quality of the obtained solution and the required computational effort. From the wide range of available evolutionary algorithms, four algorithms were selected to implement the methodology: a PseudoGenetic Algorithm (PGA), Particle Swarm Optimization (PSO), a Harmony Search and a modified Shuffled Frog Leaping Algorithm (SFLA). After more than 500,000 simulations, a statistical analysis was performed based on the specific parameters each algorithm requires to operate, and finally, E was analyzed for each network and algorithm. The efficiency measure indicated that PGA is the most efficient algorithm for problems of greater complexity and that HS is the most efficient algorithm for less complex problems. However, the main contribution of this work is that the proposed efficiency ratio provides a neutral strategy to compare optimization algorithms and may be useful in the future to select the most appropriate algorithm for different types of optimization problems
    • …
    corecore